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Chapter 1

Introduction

A filter bank is a system that decomposes digital signals into several frequency
subbands or reconstructs the original signals from the subband signals. The former
is referred to as an analysis bank and the latter as a synthesis bank. Usually,
filter banks are used as a pair of an analysis and synthesis bank and construct
an analysis-synthesis system. Such analysis-synthesis systems have been finding
a lot of applications in a wide area of signal processing so far, such as codecs
of speech, audio, picture and video signals, restoration, recognition and adaptive
filtering [1–3]. This thesis deals with design issues of transfer functions of filters
composing filter banks. Especially, such systems suitable for image processing
will be focused on, and their implementation issues will also be discussed.

X(z)

X̂(z)
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↑P0

↑P1

↑PM−1

↓P0

↓P1

↓PM−1

H0(z)
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FM−1(z)

Analysis bank Synthesis bank

Figure 1.1: An analysis-synthesis system with filter banks.
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1.1 Background

Filter banks are usually used as an analysis-synthesis system which is composed
of an analysis and synthesis bank. The analysis bank is constructed with a bank
of multiple filters and downsamplers, and the synthesis one is constructed with a
bank of multiple filters and upsamplers. Figure 1.1 shows the typical structure,
where Hk(z) and Fk(z) are digital filters and are called as the k-th channel anal-
ysis filter and synthesis filter, respectively. The box including # Pk denotes the
downsampler with the factor Pk, which decreases the sampling rate by discarding
Pk � 1 succeeding samples in every Pk period and outputting the rest, and the
box including "Pk denotes the upsampler with the factor Pk, which increases the
sampling rate by inserting Pk� 1 zero-value samples between every two succeed-
ing signals. Signals decomposed into several frequency subbands by an analysis
bank, denoted by Yk(z) in Fig. 1.1, are called subband signals. Filter banks are
characterized and classified by the characteristics of analysis and synthesis filters,
the factors of downsamplers and upsamplers, the number of channels and so forth.

If the reconstructed signals X̂(z) are identical to the original X(z), except for
delay and scaling, then the analysis-synthesis system is said to be perfect recon-
struction (PR) filter banks. PR filter banks where filters in the synthesis bank are
complex-conjugated temporal reversal of ones in the analysis bank are referred to
as paraunitary (PU) filter banks [1–3].

In most applications, subband signals are processed. For example, they are
quantized in the codec application. Any process for subband signals, however,
affects the reconstructed signals. Thus, even though the PR system is used, the
reconstructed signal differs from the original. In such a situation, the PU system
has the advantage that it guarantees that the error energy in the reconstructed sig-
nal is to be the average of the error energy in the subband signals. This property
also allows us to use optimal bit-allocation algorithms for subband codec (SBC)
applications [4].

Digital image data has a limited region of support in the spatial domain, and
can be regarded as a finite-duration signal for each horizontal and vertical di-
rection. Filtering such a finite-duration signal is known to cause the data-size-
increasing problem that the result becomes longer than the original. Additionally,
it is known that the human visual system is sensitive to the phase distortion. Thus,
for image processing, this distortion has to be avoided.

The linear-phase (LP) property is of interest, since filter banks with the LP
property can handle finite-duration signals by means of the symmetric extension
method to avoid data-size-increasing problem [5–9]. In the symmetric extension
method, a given finite-duration signal is extended symmetrically at the borders,
followed by being convolved with LP filters. This technique allows us to limit
the size of subband signals with less ringing artifacts than the periodic technique.
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Additionally, since the phase distortion can be avoided by applying filters with the
linear-phase property, it is desirable that all filters composing filter banks are linear
phase when the system is applied to image processing. Thus, several linear-phase
paraunitary filter banks (LPPUFBs) have been developed so far [2, 10–15].

Although still and moving pictures can be dealt with as two and three dimen-
sional signals, respectively, the separable system which independently handles
image data for each of the horizontal, vertical and temporal directions is popu-
larly applied. A general non-separable multidimensional (MD) system, however,
releases the limitation in the separable one. Thus, MD processing has increasingly
been used in image processing [16, 17], and interest in MD filter banks has risen
[18–20]. One-dimensional LPPUFBs can be applied to construct MD separable
systems. However, MD signals are generally non-separable, and this approach
does not exploit their characteristics effectively. Furthermore, systems which con-
sist of 1-D two-channel filter banks don’t have an overlapping solution with LP
and PU properties. In order to overcome these disadvantages, non-separable MD-
LPPUFBs are required. In this thesis, MD-LPPUFBs are discussed, as well as
1-D LPPUFBs.

1.2 Brief History

So far several 1-D LPPUFBs have been studied. The lattice and the modulation-
based structures in particular have received a lot of attention, because they enable
us to design LPPUFBs in a systematic way, and some of them enable fast im-
plementation. Late in the eighties, Malver el al. developed a special type of
LPPUFBs in which the length of all filters equals twice the number of chan-
nels [21, 22]. The system is known as the lapped orthogonal transform (LOT),
and has an fast implementation based on the lattice structure. More general sys-
tems in terms of the filter length were considered by Vetterli et al. [23] and Soman
et al. [10]. Queiroz et al. [11,12] have constructed the generalized LOT (GenLOT)
and investigated the fast implementation based on the lattice structure. Initially,
the lattice structure have been well studied for an even number of channels, and
a large class of such systems are made possible to be designed by unconstrained
non-linear optimization processes [2, 10–12]. Soman et al. showed the existence
of odd-channel LPPUFBs and provided the lattice structure [10]. However, one
of the analysis filters are restricted to be of length M , where M is the number of
channels. This limitation affects the achievable performance such as the coding
gain and stop-band attenuation [4]. In parallel with these works, the modulation-
based LPPUFBs were also established by Lin and Vaidyanathan [13]. The design
cost is known to be very efficient because just one prototype filter needs to be
designed. A drawback to this, however, is that the class covered are limited.
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The extension of the modulation-based systems to two dimension (2D) has
been presented for [24, 25]. Early in the nineties, the lattice structure for two-
dimensional (2-D) LPPUFBs had already been discussed by Karlsson and Vet-
terli [18]. Then, the structures were developed based on the sophisticated 1-D
works so that 2-D LPPUFBs can be designed in the similar way to 1-D ones [26].
The structure discussed by Kovačević and Vetterli [26], however, is for separable
decimation, that is, rectangular decimation, with an even number of channels.

1.3 Aim of This Thesis

As was stated in the previous section, the lattice structures enable us to design LP-
PUFBs by using unconstrained non-linear optimization processes. This approach
guarantees both of the LP and PU properties. However, non-linear optimization
processes are sensitive to their starting guess and has no guarantee to yield the
global minimum solution. Recently, Nagai et al. reduces the design problem to
solving a set of linear equation iteratively so that the use of non-linear optimiza-
tion can be avoided [27, 28]. In compensation for this approach, object functions
are restricted and some practical ones, such as the coding gain and stop-band at-
tenuation, are excluded.

In this thesis, let us consider applying a non-linear optimization process to the
lattice structures of LPPUFBs for their design. As the first question, the design of
1-D LPPUFBs is dealt with. To avoid at least insignificant local minimum solu-
tions, a lattice structure which makes the starting guess of the design parameters
simple will be provided . Then, a recursive initialization design procedure will be
proposed. The implementation issues are also discussed.

The LP property makes it possible to handle finite-duration signals by means
of the symmetric extension method to avoid the size-increasing problem. Any
extension method, however, treats extra signals generated by the extension, and
has redundant operations. As the second question, the redundant operations in the
symmetric extension will be discussed.

The third question is related to the design method of MD-LPPUFBs. So far,
the extension of the lattice structure of 1-D LPPUFBS to multidimension for non-
separable decimation has never been discussed. In light of this fact, a lattice struc-
ture of MD-LPPUFBs is proposed, so that a large class of MD ones can be de-
signed in a systematic way.

The structure of MD-LPPUFBs can achieve higher coding gain than that of
separable one. In compensation for this advantage, however, there is a drawback
that the symmetric extension method can not be applied due to the point-wise
symmetry of their filters. To use the method, filters have to be axial-symmetric
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(AS) for each dimension. Recently, Stanhil et al. stated this fact1 in the article [29].
It proposes a design method of ASPUFBs. However, it requires us to solve a
matrix equation under some conditions. As the final question, the lattice structure
of ASPUFBs will be considered and the design procedure will be proposed.

1.4 Organization

This thesis is organized as follows:

1.4.1 Chapter 2: 1-D Linear-Phase Paraunitary Filter Banks

Chapter 2 proposes two lattice structures of 1-D LPPUFBs which make the start-
ing guess of the design parameters simple for both of an even and odd number of
channels. The proposed structure for an even number of channels can be regarded
as a modification of the conventional GenLOT based on the discrete cosine trans-
form (DCT) [11, 12]. The DCT-based structure will be shown to be suitable for
subband codec (SBC) applications. To avoid insignificant local minimum solu-
tions in the non-linear optimization process, the recursive initialization procedure
is provided. Some design examples show the significance of the proposed pro-
cedure.The DCT-based structure will be shown to be suitable for subband codec
(SBC) applications.

1.4.2 Chapter 3: Structure for Finite-Duration Sequences

Chapter 3 proposes an efficient structure of GenLOT for finite-duration sequences,
where the number of channels is even. The proposed structure is derived from the
symmetric extension method, and enables us to limit the number of subband sam-
ples so that the total number of them equals to the number of original ones. In fact,
the structure does not require any redundant operations involved in the extension
of sequences. The proposed structure can be regarded as a generalized structure
of LOT for finite-duration sequences. The proposed structure is shown to have
less computational complexity than that of the conventional symmetric-extension
approach. It is also shown that M -band discrete-time wavelet transforms (DTWT)
for finite-duration sequences can be constructed with the proposed structure.

In addition, the application to JPEG/MPEG-compatible subband codec (SBC)
systems is considered. Compatible here means the ability of SBC systems to
encode and decode the standard bit-streams, that is, JPEG for still pictures and
MPEG 1 and 2 for moving ones. Since the proposed structure consists of the

1The word “four-fold symmetry” is used instead of “axial-symmetry.”
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block DCT employed in JPEG and MPEG, the hardware-module or software-
routine of the block DCT can be shared in both of the standard and subband cod-
ing processes. In addition, modules or routines after DCT and GenLOT, such as
quantization and entropy coding, can be used in common. The system enables us
to efficiently realize the compatibility.

1.4.3 Chapter 4: MD Linear-Phase Paraunitary Filter Banks

Chapter 4 proposes a lattice structure of MD-LPPUFBs. The lattice structure
can produce MD-LPPUFBs whose filters all have the extended region of support
N (M�), where M is the decimation matrix and � is a positive integer diag-
onal matrix (or extension matrix) under the condition that N (M) is reflection
invariant. Since the system structurally restricts both the PU and LP properties,
an unconstrained optimization process can be used to design it. The proposed
structure is developed for both an even and odd number of channels, and includes
the conventional 1-D system as a special case. It is also shown to be minimal, and
the no-DC-leakage condition is presented. By showing some design examples, the
significance of the proposed structure for both the rectangular and non-rectangular
decimation cases will be verified. For the rectangular decimation case, it is shown
that the structure achieves a higher coding gain for the isotropic acf model than
that for the separable one. In particular, the proposed structure will be demon-
strated to generate a non-rectangular decimation LPPUFB with no DC leakage.

1.4.4 Chapter 5: 2-D Axial-Symmetric Filter Banks

Chapter 5 will deal with axial-symmetric paraunitary filter banks (ASPUFBs).
Firstly, a 2-D binary-valued (BV) lapped transform (LT), to which this thesis refers
as the lapped Hadamard transform (LHT), will be proposed. LHT has basis im-
ages which are axial-symmetric (AS) and take only BV elements �1 with a scale
of a power of 2. It is known that there is no 2�2-point separable ASLT, By taking
non-separable BV basis, our proposed LHT achieves both the AS and overlapping
properties for the 2�2-point transform. It will be shown that LHT of a larger size
is provided with a tree structure. The characteristic was shown to be very similar
to that of the 2-D HT, even if LHT differs from HT in that the basis images are
overlapping and non-separable.

Next, a design method of ASPUFBs with a lattice structure, where filters are
able to take continuous valued coefficients, will be proposed. The proposed 2-D
LHT will be represented by the proposed structure as a special case. Since the
AS and PU properties are guaranteed during the design phase, an unconstrained
non-linear optimization process can be applied to the design of such filter banks.
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By showing some design examples, the significance of the proposed structure was
verified.

Note that, all through this thesis, filters are assumed to have real coefficients.

1.5 Notations

All through this thesis, the following notations are used.

o : the null column vector.

O : the null matrix. the M �M null matrix is particularly denoted by OM .

IM : the M �M identity matrix [1]. When the size is obvious or not of interest,
the subscript M is omitted.

JM : the M �M reversal (or counter-identity) matrix. When the size is obvious
or not of interest, the subscript M is omitted.

�M : the M �M diagonal matrix which has +1 and �1 elements alternatively
on the diagonal. When the size is obvious or not of interest, the subscript
M is omitted.

DM ;TM ;BM : the M �M matrices defined by

DM =

 
IdM

2
e O

O �IbM
2
c

!
; (1.1)

TM =

 
IdM

2
e O

O JbM
2
c

!
; (1.2)

BM =

8>>>>>><
>>>>>>:

1p
2

 
IM

2
IM

2

IM
2
�IM

2

!
; M : even

1p
2

0
B@
IbM

2
c IbM

2
cp

2
IbM

2
c �IbM

2
c

1
CA ; M : odd

(1.3)

where bxc and dxe denote the integer value of x and the smallest integer
greater than or equal to x, respectively.

When the size is obvious or not of interest, the subscript M is omitted.
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PM : the M �M permutation matrix which permutes the even rows into the top
half and the odd rows into the bottom half. For example,

P4 =

0
BB@
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

1
CCA (1.4)

When the size is obvious or not of interest, the subscript M is omitted.

The product of an M �M square matrix sequence An is represented as fol-
lows:

NEY
n=NS

An = ANEANE�1 � � �ANS ; NS � NE: (1.5)

In addition, the block diagonal matrix consisting of L square matrixAn is denoted
as �PL�1

`=0 An by using the direct sum notation. For example,

�
3X

n=0

An =

0
BB@
A0 O O O

O A1 O O

O O A2 O

O O O A3

1
CCA : (1.6)

The superscript ‘�’ denotes complex conjugation, and the superscripts ‘T ’ and
‘y’ on a vector or matrix denote the transposition and hermitian transposition,
respectively. Furthermore, the tilde notation ‘~’ over a vector or matrix denotes
the paraconjugation [1], for example, ~E(z) = Ey

�(z
�1), where the subscript ‘�’

denotes the complex-conjugation of the coefficients. When the elements are real,
it is reduced to ~E(z) = ET (z�1).



Chapter 2

1-D Linear-Phase Paraunitary Filter
Banks

In this chapter, lattice structures of 1-D LPPUFBs which make the starting guess
of the design parameters simple are proposed for both of an even and odd num-
ber of channels. The proposed structure for an even number of channels can
be regarded as a modification of the conventional generalized lapped orthogo-
nal transforms (GenLOT) based on the discrete cosine transform (DCT) [11, 12].
The DCT-based structure will be shown to be suitable for subband codec (SBC)
applications. To avoid insignificant local minimum solutions in the non-linear
optimization process, the recursive initialization procedure is proposed. Some de-
sign examples show the significance of the proposed procedure. In addition, to
reduce the complexities in both of design and implementation, the simplification
of the lattice strucutre will be also considered for applying it to an SBC system.

2.1 Review of Filter Banks

As a preliminary, let us review the M -channel maximally decimated uniform filter
banks, and also the PU [1] and LP properties [10, 23].

2.1.1 M -channel Maximally Decimated Uniform Filter Banks

Figure 1.1 shows a general structure of filter banks. The system which satisfies
the condition that

PM�1
k=0 1=Pk = 1 is called as maximally decimated filter banks,

which means the total rate of the subband signals is equal to that of the original.
Besides, if the factor Pk is the same as those of the other channels, that is Pk = P

for k = 0; 1; � � � ;M � 1, then the system is called as uniform filter banks. Max-
imally decimated uniform filter banks are those satisfying both of the conditions,

15
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X(z)
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F1(z)
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(a) Parallel structure

X(z)
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Figure 2.1: An analysis-synthesis system with one dimensional M -channel maximally
decimated uniform filter banks.
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and necessarily implies Pk = M for k = 0; 1; � � � ;M � 1. Figure 2.1 (a) shows
a parallel structure of M -channel maximally decimated filter banks [1], where
Hk(z) and Fk(z) are the analysis and synthesis filters, respectively. The boxes
including #M and "M denote the downsampler and upsampler with the factor
M , respectively.

The structure as shown in Fig. 2.1 (a) can always be rewritten in terms of the
polyphase matrices as shown in Fig. 2.1 (b), where E(z) and R(z) denote the
M � M polyphase matrices [1] corresponding to analysis and synthesis banks,
respectively. Let h(z) and f(z) be the M � 1 column vectors defined by

h(z) =
�
H0(z) H1(z) � � � HM�1(z)

�T
(2.1)

f(z) =
�
F0(z) F1(z) � � � FM�1(z)

�T
; (2.2)

respectively, and let

d(z) =
�
1 z�1 � � � z�(M�1)�T : (2.3)

In terms of the polyphase matrices E(z) and R(z), h(z) and f(z) are respectively
represented as

h(z) = E(zM)d(z) (2.4)

fT (z) = z�(M�1)~d(z)R(zM ): (2.5)

The analysis-synthesis system yielding the reconstructed output sequence X̂(z)
which is identical to the input X(z), except for the delay and scaling, is referred
to as the reconstruction (PR) filter banks. If E(z) and R(z) satisfy the following
condition [1]:

R(z)E(z) = z�NIM (2.6)

for some integer N , then the system has PR property.

2.1.2 Paraunitary (PU) Property

If E(z) satisfies the following condition [1]:

~E(z)E(z) = IM ; (2.7)

then it is said to be paraunitary (PU).
The condition as in Eq. (2.7) is sufficient to construct PR filter banks, since

the PR property as in Eq. (2.6) is guaranteed by choosing the synthesis polyphase
matrix as R(z) = z�N ~E(z). When E(z) is causal FIR of order N , so is R(z) in
this choice. Besides, it is of interest that the property as in Eq. (2.7) allows us to
use optimal bit-allocation algorithms in the SBC applications [4].
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2.1.3 Linear-Phase (LP) Property

Assume that E(z) is real and causal FIR of order N . On this assumption, the
corresponding analysis filters Hk(z) are also causal FIR with real coefficients and
of order K = (N + 1)M � 1. If E(z) further satisfies the following property
[10, 23]:

z�N�ME(z
�1)JM = E(z); (2.8)

then each analysis filter Hk(z) for even k is symmetric and one for odd k is anti-
symmetric with the center of symmetry K=2. When the number of channels M is
even, the analysis bank h(z) consists of M=2 symmetric and M=2 antisymmetric
LP filters. On the other hand, the analysis bank h(z) consists of (M + 1)=2 sym-
metric and (M�1)=2 antisymmetric LP filters. The system described in Eq. (2.8)
satisfies the necessary condition for LP PR filter banks with respect to the numbers
of symmetric and antisymmetric filters [10, Theorem 1, Colloraly 1].

2.2 Lattice Structure

The 1-D LPPUFBs which satisfy the conditions in Eqs. (2.7) and (2.8) has already
been established in the articles [10, 14, 15] for even M . The conventional lattice
structures are known to be complete for the class of even-channel LPPUFBs whose
filters are real and of length a multiple of M . That is, those structures can realize
any system for the given class. The representation proposed here covers the same
class as them and the corresponding lattice structure is based on the type-II DCT
(DCT-II) [30]. As a result, the proposed structure enables us to simply implement
LPPUFBs holding better performance, such as coding gain (Appendix A) and
stop-band attenuation, than that of the conventional DCT-based structure.

For odd M , Soman et al. showed the existence of LPPUFBs and provided the
lattice structure [10]. The lattice structure, however, has the problem that one of
the analysis and one of the synthesis filters are restricted to be of length M . This
limitation affects the achievable performance. To solve this problem, Nagai et
al. improved the lattice structure to cover larger class of LPPUFBs than Soman’s
system [27, 28]. In the article [27], to avoid the use of non-linear optimization,
the design problem is reduced to solving a set of linear equations iteratively. In
compensation for this approach, object functions are restricted and some practical
ones, such as coding gain, are excluded. In this thesis, let us consider applying
a non-linear optimization process to a lattice structure. Thus, in order to release
the starting-guess problem, another odd-channel lattice structure which makes the
starting guess of design parameters simple will be provided.
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Furthermore, some comments on the regularity are also given, which is im-
portant to construct M -band wavelets [10, 14] and avoid the checkerboard arti-
facts [2].

2.2.1 For EvenM

In this section, a factorization technique of LPPUFBs satisfying of Eqs. (2.7) and
(2.8) for evenM is discussed. The proposed factorization provides a new structure
of the DCT-based GenLOT, which covers the same class as that of the general
form [14]. That is, it is complete for even-channel LPPUFB whose filters are real
and of length a multiple of M , while the conventional DCT-based GenLOT is
not. Since the lattice structure is based on the DCT-II, it has an advantage that a
good initial guess in the design phase can be made especially for the coding gain.
In addition, the reduced structure given by simplifying the entire structure yields
the good approximation in terms of the coding gain with small complexity in its
implementation.

Overlap-Save Method Based on DCT

In the following, an FIR filtering technique based on the DCT-II is provided.
The technique can be regarded as a modification of the generalized overlap-save
method (OLS) [3] and has an important role for factoralizing LPPUFB described
in Eqs. (2.7) and (2.8).

Let H(z) be an FIR filter and e(z) be the M � 1 vector defined by

e(z) =
�
E0(z) E1(z) � � � EM�1(z)

�T
; (2.9)

where E`(z) is the `-th type-I polyphase component of H(z) with the decomposi-
tion factor M . In terms of e(z), H(z) can be represented as H(z) = eT (zM )d(z).
In the followings, the factor M is assumed to be even.

In order to establish OLS with the DCT-II for FIR filtering, let us firstly de-
compose e(z) into the symmetric vector s(z) and antisymmetric vector a(z), as
follows:

e(z) = s(z) + a(z) (2.10)

where

s(z) =
e(z) + JMe(z)

2
; (2.11)

a(z) =
e(z)� JMe(z)

2
: (2.12)
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Note that s(z) and a(z) are uniquely determined from their own M=2�1 bottom-
half vectors, which consist of their representative elements, respectively. By de-
noting the bottom-half vectors of s(z) and a(z) as sr(z) and ar(z), respectively,
e(z) can be represented as follows:

eT (z) =
�
srT (z) arT (z)

� JM
2

IM
2

�JM
2

IM
2

!
: (2.13)

Then, let us define transform coefficient vectors gE(z) and gO(z) of sr(z) and
ar(z), respectively, by

gE(z) = �M
2
CII

M
2

sr(z); (2.14)

gO(z) = �M
2
SIVM

2

ar(z); (2.15)

where CII
M and SIVM denote the M -point orthonormal DCT-II and type-IV dis-

crete sine transform (DST) matrices [30], respectively. Substituted the relations
srT (z) = gE

T (z)�M
2
CII

M
2

and arT (z) = gO
T (z)�M

2
SIVM

2

, Eq. (2.13) can be rewrit-
ten as

eT (z) =
p
2
�
gTE(z) gTO(z)

�
PMC

II
MJM ; (2.16)

where the properties PMP
T
M = IM , �MCII

M = CII
MJM and �MSIVM = CIV

MJM
and the sparse matrix factorization of the DCT-II [30]

CII
M=

1p
2
PT
M

 
CII

M
2

O

O CIV
M
2

! 
IM

2
JM

2

IM
2
�JM

2

!
(2.17)

are used, where CIV
M is the M -point orthonormal type-IV DCT matrix [30]. From

Eq. (2.16), an equivalent structure to H(z) can be obtained as shown in Fig. 2.2.
The structure can be regarded as a special case of the generalized OLS [3] using
the DCT-domain filtering technique [31].

Assume that the order of the polyphase component vector e(z) is N , which
sometimes referred to as the overlapping factor in this thesis. In this case, the
order of H(z) results in K = (N+1)M�1. Note that if and only if H(z) is sym-
metric with the center of symmetry K=2, that is, the case that z�NeT (z�1)JM =
eT (z), then the following properties are satisfied with 
E = 1 and 
O = �1:

gE(z) = 
Ez
�NgE(z�1); (2.18)

gO(z) = 
Oz
�NgO(z�1): (2.19)

Additionally, if and only if H(z) is antisymmetric with the center of symmetry
K=2, that is, the case that �z�NeT (z�1)JM = eT (z), the above properties are
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Figure 2.2: A structure of DCT-based OLS for FIR filtering. The letters ‘E’ and ‘O’
represent even and odd coefficients, respectively.

satisfied with 
E = �1 and 
O = 1. These properties can be used to factorize
LPPUFB.

Actually, we can replace the DCT-II matrix, CII
M , in Eq. (2.16) by any other

orthonormal matrix consisting of symmetric or antisymmetric basis vectors. How-
ever, in the following, we just consider employing the DCT-II matrix on the as-
sumption that filter banks are applied to SBC systems of images, since the DCT-II
matrix gives us a good initial guess in the design phase in terms of the coding gain
and has several fast algorithms [30]. Note that the use of the DCT-II matrix does
not necessarily mean that the resulting structure is inappropriate to any other cost
functions.

New Structure of DCT-Based GenLOT

In this section, by using the DCT-based OLS developed in the previous section, let
us discuss a factorization technique of LPPUFB satisfying Eqs. (2.8) and (2.7) for
even M . The proposed factorization provides a new structure of the DCT-based
GenLOT [11, 12], which covers the same class as that of the general form [14].

Assume that E(z) is causal FIR of order N and satisfies the condition as in
Eq. (2.8), and that the number of channels M is even. As mentioned before, on
this assumption, the corresponding analysis filters Hk(z) are causal FIR of order
K = (N + 1)M � 1, and the analysis bank h(z) consists of M=2 symmetric and
M=2 antisymmetric LP filters.

Let ek(z) be the type-I polyphase component vector of Hk(z) provided as in
Eq. (2.9), that is, the transpose of the k-th row vector of E(z). Since ek(z) can
be represented with the DCT-II as in Eq. (2.16) and satisfies the LP properties
Eqs.(2.18) and (2.19), E(z) can be rewritten as the following form:

E(z) = PT
MG(z)PMC

II
MJM ; (2.20)
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where G(z) is the M � M matrix which consists of the transform coefficient
vectors obtained from ek(z) as in Eqs.(2.14) and (2.15), and has the form

G(z) =
p
2

�
GES(z) GOA(z)
GEA(z) GOS(z)

�
: (2.21)

In Eq. (2.21),GES(z),GOA(z),GEA(z) andGOS(z) denoteM=2�M=2 matrices
of order N which satisfy the properties

G�S(z) = z�NG�S(z�1); (2.22)

G�A(z) = �z�NG�A(z�1); (2.23)

where the subscript ‘-’ stands for either ‘E’ or ‘O’. The top half sub-matrix of
G(z) corresponds to symmetric filters and the rest does antisymmetric ones.

Then, let us consider factorizingG(z) satisfying the property Eq. (2.21) under
the PU constraint Eq. (2.7). Note that if and only if E(z) is PU, the G(z) is PU
since all of PM , JM and CII

M are PU. For convenience of the further discussion,
let us define the M �M matrix F(z) by

F(z) = TMBMG(z): (2.24)

Note that both of TM and BM are orthonormal. The matrix F(z) can be repre-
sented as

F(z) = TM

�
FE(z) FO(z)

z�NFE(z
�1) �z�NFO(z

�1)

�
; (2.25)

whereFE(z)=GES(z)+GEA(z) and FO(z)=GOS(z)+GOA(z). From Eq. (2.25),
it can be verified that F(z) satisfies the following property:

z�NJMF(z�1)DM = F(z): (2.26)

Once the above relation was obtained, as done in the proof for [10, Theorem
3], any F(z) can completely be factorized under the PU constraint Eq. (2.7) as

F(z) = TBRNB�(z)BRN�1B � � ��(z)BR0; (2.27)

where

Rm =

�
Wm O

O Um

�
; (2.28)

�(z) =

 
IM

2
O

O z�1IM
2

!
: (2.29)
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In the above equation, Wm and Um are M=2 �M=2 orthonormal matrices. It
should be noted that F(z) of which order is zero has the form F(z) = TBR0.
Substituted the relation G(z) = BTF(z) and Eq. (2.27), Eq. (2.20) can be repre-
sented as follows:

E(z) = PT
M

(
NY

m=1

RmQ(z)

)
R0PMC

II
MJM ; (2.30)

where Q(z) = B�(z)B, which is also PU.
From Eq. (2.30), notice that any PU analysis bank described in Eq. (2.8) for

even M can always be constructed with the lattice structure as shown in Fig. 2.3,
where the scaling factors 1=

p
2 involved in B are unified, so that the result is

2�N . Conversely, we can utilize the structure to design LPPUFB by controlling
Wm andUm. Because of the PU property ofE(z), the counterpart synthesis bank
R(z) holding PR property is simply obtained as R(z) = z�N ~E(z).

From Fig. 2.3, the structure can be regarded as a new representation of the
DCT-based GenLOT [11, 12]. The conventional DCT-based GenLOT is viewed
as the special case that R0 = IM . Note that the limitation of R0 affects the
achievable performance such as coding gain and stopband attenuation.

Fast Implementation

Fast implementation here means an efficient realization of filter banks by simpli-
fying their structural components to reduce the computational operations without
significant loss of the performance. This simplification also contributes to reduc-
tion of the complexity in their design process.

The limitation of the conventional DCT-base GenLOT affects the performance
of its fast implementation. The proposed GenLOT can overcome this problem.

In the entire structure as in Eq. (2.30), the number of free parameters, that is,
rotation angles, to be optimized is (N+1)(M�2)M=4, and the implementation re-
quires �(CII

M)+(N+1)M2=2 multiplications and �(CII
M)+(N+1)(M�2)M=2+

2NM additions per block, where �(CII
M) and �(CII

M) denote the number of mul-
tiplications and additions of M -point DCT-II, respectively, and it is assumed that
each of Wm and Um requires M2=4 multiplications and (M � 2)M=4 additions.
As well known, DCT-II has several ways of the fast implementation [30], and
therefore, can be efficiently implemented.

To reduce both of the design and implementation complexities of the proposed
GenLOT, let us consider simplifying the matrices Wm and Um as

Wm = IM
2
; (2.31)

Um = Tm;M
2
�2Tm;M

2
�3 � � �Tm;0 (2.32)
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−
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−

−
Y(θm,i)

Figure 2.4: A simplified representation of the structure for the matrixRm (M = 8)

for m = 0; 1; � � � ; N , respectively, in the similar way to the type-I fast LOT [21,
22], where

Tm;i =

0
@Ii O O

O Y(�m;i) O

O O IM
2
�i

1
A ; (2.33)

Y(�m;i) =

�
cos �m;i � sin �m;i

sin �m;i cos �m;i

�
: (2.34)

For example, Fig. 2.4 shows the simplified structure of the matrix Rm of M =
8. By this simplification, the number of rotation angles �m;i to be optimized is
reduced to (N+1)(M�2)=2, and the implementation complexity is also reduced
to �(CII

M) + 3(N + 1)(M � 2)=2 multiplications and �(CII
M) + 3(N + 1)(M �

2)=2 + 2NM additions per block, where it is assumed that each Um requires
3(M � 2)=2 multiplications and 3(M � 2)=2 additions.

As will be shown experimentally, this simplification does not lead significant
reduction of the coding gain. Note that the recursive initialization approach de-
scribed later is available, and that the proposed fast implementation can achieve
higher coding gain than the conventional one.

2.2.2 For OddM

In the following, a new product form of polyphase matrices satisfying both of
Eqs.(2.7) and (2.8) for odd M is proposed. The proposed product form provides
a new lattice structure of LPPUFB.
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Overlap-Save Method with LP Orthonormal Matrices

For the latter discussion, let us provide an FIR filtering technique based on odd-
size LP orthonormal matrices in the similar way to the previous section. The tech-
nique can be regarded as a modification of the generalized overlap-save method
described in Section 2.2.1, and has an important role for constructing LPPUFB
for odd M .

Let H(z) be an FIR filter and e(z) be the M � 1 vector defined by e(z) =�
E0(z) E1(z) � � � EM�1(z)

�T
, where E`(z) is the `-th type-I polyphase com-

ponent of H(z) with the decomposition factor M . In the following, let us assume
that the factor M is odd.

Firstly, let us decompose e(z) into the symmetric vector s(z) and antisymmet-
ric vector a(z) as in Eqs. (2.11) and (2.12). There is a relation e(z) = s(z)+a(z).
Note that s(z) and a(z) are uniquely determined from their own (M + 1)=2 � 1
and (M � 1)=2� 1 bottom vectors, respectively.

Let sr(z) and ar(z) be those bottom vectors of s(z) and a(z), respectively, and
define transform coefficient vectors gE(z) and gO(z) of sr(z) and ar(z) by

gE(z) = �SJM+1
2
sr(z); (2.35)

gO(z) = �AJM�1
2
ar(z); (2.36)

where �S and �A denote arbitrary (M + 1)=2 � (M + 1)=2 and (M � 1)=2 �
(M � 1)=2 orthonormal matrices, respectively. In terms of gE(z) and gO(z), the
vector e(z) can be rewritten as follows:

eT (z) =
p
2
�
gTE(z) gTO(z)

�
nCJM ; (2.37)

where C is the M �M LP orthonormal matrix provided as follows:

C =
1p
2

�
�S O

O �A

�0B@
IM�1

2
o JM�1

2

oT
p
2 oT

JM�1
2

o �IM�1
2

1
CA : (2.38)

Eq. (2.37) can be regarded as a special case of the generalized OLS in transform-
domain filtering technique [3].

When the order of the polyphase component vector e(z) is N , the order of
H(z) results in K = (N + 1)M � 1. Note that if and only if H(z) is symmetric
with the center of symmetry K=2, that is, the case that z�NeT (z�1)JM = eT (z),
then the following properties are satisfied with 
E = 1 and 
O = �1:

gE(z) = 
Ez
�NgE(z�1); (2.39)

gO(z) = 
Oz
�NgO(z�1): (2.40)
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In addition, if and only if H(z) is antisymmetric with the center of symmetry
K=2, that is, the case that �z�NeT (z�1)JM = eT (z), the above properties are
satisfied with 
E = �1 and 
O = 1.

New Product Form

By using the OLS shown above, let us derive a new product form of LPPUFB for
odd M . Let ek(z) be the type-I polyphase component vector of Hk(z), that is, the
transposition of the k-th row vector of E(z). Since ek(z) can be represented as in
Eq. (2.16), E(z) has the following form:

E(z) = PT
MG(z)CJM ; (2.41)

where G(z) is the M � M matrix which consists of the transform coefficient
vectors obtained from ek(z) as in Eqs.(2.35) and (2.36), andP denotes theM�M
matrix which permutes the even rows into the (M + 1)=2 top rows and the odd
rows into the (M � 1)=2 bottom rows.

Then, let us consider constructingG(z) under the PU constraint as in Eq. (2.7)
and LP constraint as in Eq. (2.8). Note that if and only if E(z) is PU, G(z) is PU
since all of PM , JM and C are PU. For convenience of the further discussion, let
us define the M �M matrix F(z) by F(z) = TMBMG(z).

It can be verified that if and only if F(z) is PU, then so is G(z). As a result,
the PU property of F(z) implies that ofE(z). In addition, the LP property ofE(z)
as in Eq. (2.8) can be represented in terms of F(z) as follows:

z�NJMF(z�1)DM = F(z): (2.42)

The condition as in Eq. (2.42) is proven from the fact that the transform coefficient
vectors included in G(z) satisfy Eqs.(2.39) and Eq. (2.40) with 
E = 1 and 
O =
�1 for top (M + 1)=2 row vectors, and with 
E = �1 and 
O = 1 for bottom
(M � 1)=2 row vectors.

Let Fm(z) be the matrix of order m which satisfies both of PU property as in
Eq. (2.7) and the condition as in Eq. (2.42), and let

RE` =

�
WE` O

O UE`

�
(2.43)

RO` =

0
@WO` o O

oT 1 oT

O o UO`

1
A (2.44)

where WE` is an (M + 1)=2� (M + 1)=2 orthonormal matrix, and all of WO`,
UE` and UO` are (M � 1)=2� (M � 1)=2 orthonormal matrices.
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Then, we can construct Fm+2(z), which also satisfies Eqs.(2.7) and (2.42),
from Fm as follows:

Fm+2(z) = KE;m+2�E(z)KO;m+2�O(z)Fm(z); (2.45)

where KE;` = TBRE;`BT, KO;` = TBRO;`BT, and

�E(z) =

 
IM+1

2
O

O z�1IM�1
2

!
; (2.46)

�O(z) =

 
IM�1

2
O

O z�1IM+1
2

!
: (2.47)

As a result, by constructing E(z) with the following product form, we can
obtain LPPUFB described by Eqs.(2.7) and (2.8) for odd M and even N , where
N is the order of E(z).

E(z) = PT

(
LY
`=1

RE`QE(z)RO`QO(z)

)
RE0CJM (2.48)

where QE(z) = B�E(z)B, QO(z) = B�O(z)B, and L = N=2. When N = 0,
E(z) = PTRE0CJM .

Eq. (2.48) provides us the lattice structure of LPPUFB for odd M and even N
as shown in Fig. 2.5. This system consists of (M + 1)=2 symmetric and (M �
1)=2 anti-symmetric filters of odd length. Note that the overlapping factor N is
even when M is odd [15]. The product form guarantees both of the PU and LP
properties. the counterpart synthesis bank holding perfect reconstruction is simply
obtained because of the PU property [1].

The product form as in Eq. (2.48) covers larger class of LPPUFB than that
provided in the article [10]. Substituted�S = IM+1

2
and�A = �JM�1

2
, Eq. (2.48)

results in the factorization given in the articles [27, 28]. Independently from this
thesis, the factorization is shown to be minimal and complete for odd-channel
LPPUFBs whose filters all have length (N + 1)M . Note that any choice of �S

and �A does not affect the minimality and the completeness. As will be shown,
proper choice of these matrices makes the starting guess of the design parameters
simple, and these matrices contribute only for the starting guess and are fixed
during the design phase.

2.2.3 No DC leakage

The use of the LPPUFBs enables us to obtain M -band LP orthonormal wavelets
by iterating the decomposition [10, 14]. The condition that the continuous time
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wavelets have at least one vanishing moment is that

h(1) = E(1)d(1) =
�p

M 0 0 � � � 0
�T
; (2.49)

where d(1) is the M � 1 vector whose elements are all ‘1’. In this case, there
is no DC leakage into the higher frequency subbands. When applied to image
processing, filter banks should have band pass and high pass filters that have no
DC leakage [2]. This is because the DC leakage causes undesirable distortion,
which is known as checkerboard artifacts, in the reconstructed images when the
subband signals are processed.

Suppose that E0d(1) =
�p

M 0 0 � � � 0
�T

. In the proposed structure,
the above condition can be reduced to

NY
n=0

Wn =

�
1 oT

o V

�
(2.50)

for even M , or "
LY
`=1

�
WE`

�
WO` o

oT 1

��#
WE0 =

�
1 oT

o V

�
(2.51)

for odd M , where V is a (dM=2e � 1)� (dM=2e � 1) orthonormal matrix. The
above condition is easily derived from the facts that Q(1) = I, QE(1) = I, and
QO(1) = I.

For an even number of channels, a design made by controlling the matricesRn

subject to Eq. (2.50) leads to LPPUFBs which have no DC leakage. The design
can be achieved by restricting the matrixW0 to a matrix whose first column vector

is the transposition of the first row vector of the product
hQN

n=1Wn

i
. Note that

the inverse of the product is a candidate of W0 yielding no DC leakage. For odd
M , a design made by controlling the matrices RE` and RO` subject to Eq. (2.51)
leads to LPPUFBs without DC leakage. Similarly, this design can be achieved by
properly choosing the matrix WE0.

2.3 Design Procedure

According to the factorization as in Eq. (2.30), we can construct any even-channel
LPPUFB satisfying Eqs.(2.7) and (2.8) by controlling 2(N + 1)M=2�M=2 or-
thonormal matricesWm and Um in the structure as shown in Fig. 2.3. Since each
Wm andUm can completely be characterized in terms ofM(M�2)=8 Givens ro-
tations (or planar rotations) [1, 3], it is allowed to design such a system by means
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of an unconstrained optimization process to minimize (or maximize) some ob-
ject function. Both of the PU property as in Eq. (2.7) and the LP property as in
Eq. (2.8) are guaranteed while designing since these constraints are structurally
imposed. By controlling the matrices WE`, WO`, UE` and UO`, we can also de-
sign LPPUFBs for odd M . SinceWE` can be characterized by (M+1)(M�1)=8
plane rotations, and each of the others can be done by (M�1)(M�3)=8 ones [1],
a non-linear unconstrained optimization process can be used to design them.

Any non-linear optimization, however, has no guarantee to yield the global
minimum solution, and the result is sensitive to the starting guess. Thus, there is
a possibility of the result being worse than DCT. In this section, let us consider
avoiding such an insignificant local minimum solution in the design phase.

2.3.1 For EvenM

The lager overlapping factor N is, the more complex the starting guess becomes.
One of the feasible approaches to guess the starting point is the evolutionary ap-
proach, which starts from lower order problems and uses the results as the starting
points for higher order ones.

The following shows the proposed design procedure with an evolutionary ap-
proach. It is based on a technique of delay realization with the lattice structure,
which will be shown as a lemma. The proposed procedure is as follows, where N
is the overlapping factor, that is, the order of the polyphase matrix:

Step 1: Start with proper LPPUFB E0(z) for even N or E1(z) for odd N , for
example DCT-II or LOT. Then, set m = 0 and optimize E0(z) or set m = 1
and optimize E1(z).

Step 2: Initialize Em+2(z) by using Em(z) as Em+2(z) = z�1Em(z), and in-
crement m as m m + 2.

Step 3: Optimize the system and to go Step 2 until the order reaches to N .

Note that the starting guess of DCT-II or LOT in Step 1 is easily achieved,
since the proposed structure is based on the DCT-II. DCT-II and LOT as starting
guess are suitable especially for maximizing the coding gain. The above proce-
dure, however, can be applied to any object function, even if either DCT-II or LOT
is chosen as the starting guess. The proposed procedure guarantees that the result
is not inferior to the starting guess in terms of the given object function.

Although it does not guarantee the global minimum solution, experimental
results show that it does not leads to an insignificant solution. In addition, there is
a simple mapping procedure by which the initialization in Step 2 can be achieved
in the lattice structure.



32 CHAPTER 2. 1-D LINEAR-PHASE PARAUNITARY FILTER BANKS

The procedure is based on the following lemma:

Lemma 2.1. Let En(z) be a matrix of order n represented as in Eq. (2.30). It can
be verified that, when

Rn = DM ; (2.52)

there exists a matrixEn�2(z), and the matrixEn(z) can be represented as follows:

En(z) = z�1En�2(z): (2.53)

Proof. Substituted Eq. (2.52), RnQ(z)Rn�1Q(z) results in z�1IM . Hence, from
Eq. (2.30), Eq. (2.53) holds.

Eq. (2.53) implies that the system En(z) is identical to the two lower order
system En�2(z) but with the delay. Hence, when En�2(z) has good performance,
for example high coding gain, so does En(z). From this fact, in order to design
En(z), well-designed En�2(z) should be a good candidate for the starting guess,
appended the section PTRnQ(z)Rn�1Q(z)P with the matrices in Eq. (2.52).

Indeed, the proposed GenLOT is slightly inefficient compared with the con-
ventional general form. However, since the DCT-II is a good approximation to
the optimum solution of the first transform matrix in the general form and has
several fast algorithms [30], the complexity of the proposed structure is consider-
ably reduced by some simplification as discussed in Section 2.2.1, holding high
coding gain. If desired, we can replace the DCT-II matrix by any other orthonor-
mal matrix with symmetric/antisymmetric basis vectors according to the object
function.

2.3.2 For OddM

In the following, the proposed design procedure with an evolutionary approach
and a technique of delay realization for odd M are shown. The proposed proce-
dure is as follows, where N is the overlapping factor:

Step 1: Start with proper E0(z), for example, by putting the M -point type-I
DCT (DCT-I) as the matrix C and letting RE0 = IM . Then, set ` = 0 and
optimize E0(z).

Step 2: Initialize E2(`+1)(z) by using E2`(z) as E2(`+1)(z) = z�1E2`(z), and
increment ` as ` `+ 1.

Step 3: Optimize E2`(z), and go to Step 2 until the order 2` reaches to N , that
is, ` reaches to L = N=2.
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This procedure is applicable to any object function. Similar to the case of even-
number of channels, there is a simple mapping procedure by which the initializa-
tion in Step 2 can be achieved in the lattice structure. The procedure is based on
the following lemma:

Lemma 2.2. Let En(z) be a matrix of order n provided as in Eq. (2.48) and
` = n=2. When

RE` = RO` = DM ; (2.54)

En(z) can be represented as follows:

En(z) = z�1En�2(z); (2.55)

where En�2(z) is a polyphase matrix of order n � 2, which satisfies the LP and
PU properties.

Proof. Substituted Eq. (2.54), RE`QE(z)RO`QO(z) results in z�1IM . Hence,
from Eq. (2.48), Eq. (2.55) holds.

Eq. (2.55) implies that En(z) is identical to En�2(z) except for the delay.
Thus, to design En(z), well-designed En�2(z) should be a good candidate for the
starting guess, appended the section PTRE`QE(z)RO`QO(z)P with the matrices
in Eq. (2.54).

In addition, the proposed procedure at least guarantees that the performance
of the resulting system is not worse than that of the lower order system. In this
point of view, the proposed structure is preferable since, by simply choosing the
matrices�S and�A as (M+1)=2-point DCT-I and (M�1)=2-point type-III DCT
(DCT-III), respectively, the matrixC in Eq. (2.48) can be set as the M -point DCT-
I [30], which provides a good starting guess of E0(z) with RE0 = IM for most
practical object functions and has several fast algorithms [30]. In other words,
insignificant local minimum solutions can be avoided and the matrix C can be
efficently implemented.

2.4 Design Examples

In order to verify the significance of the proposed structure, some design examples
are given.
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Table 2.1: Coding gain GSBC of several transforms, for an AR(1) signal with � = 0:95

and computational complexities (M = 8). N denotes the order of the corre-
sponding polyphase matrix. #MUL’s and #ADD’s stand for the numbers of
multiplications and additions per block, respectively.

TRANSFORM N GSBC #MUL’s #ADD’s
[dB] [/Block] [/Block]

DCT-II 0 8.825 13 29
LOT-Fast I 1 9.198 22 54

Conventional 2 9.180 77 109
DCT-based GenLOT 3 9.360 109 149

0 8.846 45 53
Proposed 1 9.269 77 93
GenLOT 2 9.394 109 133

3 9.463 141 173
0 8.827 22 38

Proposed Fast 1 9.232 31 63
GenLOT 2 9.315 40 88

3 9.438 49 113

2.4.1 For EvenM

The following shows the design examples of even-channel LPPUFBs with the
proposed lattice structure, where the object function of optimization is chosen as
the maximum coding gain GSBC.

Table.2.1 shows the resulting GSBC’s of the proposed GenLOT and its fast
structure which are optimized for an AR(1) signal with � = 0:95 (Appendix B),
and also their implementation complexities, where the number of channels M was
fixed to 8. Those of DCT-II [30], the type-I fast LOT (denoted as LOT- FAST I)
[21,22] and the conventional DCT-based GenLOT [11,12] are also shown, where
any simplification for fast implementation is not assumed for the conventional
GenLOT.

From Tab.2.1, the following things are noticed: 1) GSBC of the proposed fast
GenLOT is comparable to that of the entire structure, and the implementation is
more efficient. 2) GSBC of the proposed fast GenLOT is higher than that of the
conventional DCT-based GenLOT where no simplification is assumed, and the
implementation is more efficient. Summarizing, the fast implementation of the
proposed fast GenLOT is superior to the conventional technique in terms of the
coding gain, in spite of the parameter reduction.

As an example, Table. 2.2 gives the optimized angles �m;i of the proposed
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Figure 2.6: A design example of the proposed fast GenLOT for an AR(1) signal with
� = 0:95 (M = 8; N = 3;K = 31).
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Table 2.2: A design example of the proposed fast GenLOT: angles �m;i optimized for an
AR(1) signal with � = 0:95 (M = 8; N = 3).

�m;i i

0 1 2

0 �0:15� �0:02� �0:04�
m 1 1:29� �0:03� 0:93�

2 1:17� �0:01� 1:05�
3 0:85� �0:15� 1:19�

fast GenLOT, where M = 8 and N = 3. Besides, the amplitude and impulse
responses of the optimized analysis filters Hk(z) are given in Fig. 2.6.

2.4.2 For OddM

In order to verify the significance of the proposed method for odd M , some design
examples are shown, whereC is fixed as theM -point DCT-I matrix. Figure 2.7 (a)
and (b) give the amplitude responses of 9 analysis filters designed for coding gain
GSBC for AR(1) process with the correlation coefficient � = 0:95, and those for
minimum stop-band attenuation AS, respectively, where M = 9, N = 6(L = 3)
and each analysis filter has M(N + 1) = 63 tap length. For maximizing AS ,
transition-band width of each filter is set to �=2M = �=18 [rad]. These examples
are obtained by using the routines ’ fminu’ for (a) and ’ minimax’ for (b) provided
by MATLAB optimization toolbox [32]. The resulting coding gain and minimum
stop-band attenuation are GSBC = 9:65 [dB] and AS = 30:9 [dB], respectively.

In Fig. 2.8, the resulting GSBC and AS are shown for M = 3; 5; 7 and 9.
The coding gain GSBC is maximized for AR(1) process with � = 0:95, and the
minimum stop-band attenuation AS is maximized with the transition-band-width
�=2M [rad]. Figure 2.8 shows that, as the overlapping factor (or the order of
polyphase matrix ) N increases, both of GSBC and AS increase for M = 5; 7 and
9. This illustrates that the recursive initialization procedure does not yield worse
solution than that of the system which is used as the starting guess. This statement
is also true for M = 3. However, the performance does not improved even if the
order increases. This is because the LPPU condition is crucial for this case.

2.5 Summary

In this chapter, two new structures of M -channel real-coefficient linear-phase pa-
raunitary filter banks (LPPUFBs) were proposed for both of even and odd M . The
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where each transition-band width is set to �=2M = �=18 rad. AS =
30:88 dB.

Figure 2.7: Design examples: amplitude responses of 9 analysis filters, where M = 9,
N = 6(L = 3) and the length of each filter is 63.
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proposed structure for evenM can be regarded as a new representation of the con-
ventional DCT-based GenLOT. The proposed structure for even M has the signif-
icant feature that a fast implementation is achievable by simplifying the structural
componets without significant loss of the coding gain. It was also shown that
the fast implementation is applicable to construct M -band linear-phase orthonor-
mal wavelets with regularity. Additionally, a lattice structure of odd-channel LP-
PUFBs was proposed, which solves the problem in the conventional structure
shonw in [10] that one of the analysis and one of the synthesis filters are restricted
to be of length M .

With both of the proposed structures, it is allowed to design LPPUFBs by
means of an unconstrained optimization process to minimize (or maximize) some
object function. Both of the PU and LP properties are guaranteed while designing
since these constraints are structurally imposed.

Any non-linear optimization, however, has no guarantee to yield the global
minimum solution, and the result is sensitive to the starting guess. Thus, we
considered avoiding insignificant local minimum solutions in the design phase,
and proposed a recursive initialization design procedure by introducing a delay
realization in the proposed structures. The recursive initialization procedure is
applicable to any object function. Since the proposed structure for even M is
based on DCT-II, it provides us a good initial guess especially for maximizing
the coding gain. Some design examples showed the significance of the proposed
method.
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Chapter 3

Structure for Finite-Duration
Sequences

In this chapter, an efficient structure of GenLOT (see Chapter 2) for finite-duration
sequences is proposed, where the number of channels is even. The proposed struc-
ture is derived from the symmetric extension method [5–9], and enables us to
limit the number of subband samples so that the total number of them equals to
the number of original ones. In fact, the structure does not require any redundant
operations involved in the extension of sequences. The fast implementation pro-
vided in Section 2.2.1 is still available. Additionally, the proposed structure can
be regarded as a generalized structure of LOT for finite-duration sequences. The
proposed structure is shown to have less computational complexity than that of the
direct symmetric-extension approach. It is also shown that M -band discrete-time
wavelet transforms (DTWT) for finite-duration sequences can be constructed with
the proposed structure.

In addition, the application to JPEG/MPEG-compatible subband codec (SBC)
systems is considered. Compatible here means the ability of SBC systems to
encode and decode the standard bit-streams, that is, JPEG for still pictures and
MPEG 1 and 2 for moving ones. Since the proposed structure consists of the block
DCT employed in JPEG and MPEG, the hardware-module or software-routine of
the block DCT can be shared in both of the standard and subband coding pro-
cesses. In addition, modules or routines after DCT and GenLOT, such as quan-
tization and entropy coding, can be used in common, since the subband signals
have the identical format to that of the DCT coefficients. The system enables us
to efficiently realize the compatibility.

This chapter uses the following notations:

41



42 CHAPTER 3. STRUCTURE FOR FINITE-DURATION SEQUENCES

EN

↓M

↓M

↓M

Lh

Subband signals

Analysis bank

z−1

z−1
z−1

z−γ
x(n)

y0(i)

y1(i)

yM−1(i)

Figure 3.1: Implementation of analysis process of lapped transforms.

B+
M , B�

M : the M=2�M matrices defined for even M as follows:

B+
M =

�
IM=2 IM=2

�
; (3.1)

B�
M =

�
IM=2 �IM=2

�
: (3.2)

CM : the M � M orthonormal type-II DCT (DCT-II) matrix, of which k; n-th
element is defined as follows:

[CM ]k;n =

r
2

M
ck cos

�
k(n+ 1

2
)�

M

�
; (3.3)

for k; n = 0; 1; 2; � � � ;M � 1, where c0 = 1=
p
2 and ck = 1 for k 6= 0 [30].

Although we consider applying GenLOT to image coding, the following dis-
cussion is dealt with in one-dimension on the assumption that the processing is
separable.

3.1 Transform Matrix Representation

GenLOT is a structure of even-channel LPPUFBs where all filters are of length a
multiple of the number of channels, and known to be complete for such class of
filter banks (see Chapter 2). Let EN(z) be the polyphase matrix of a GenLOT’s
analysis bank with the overlapping factor N . Now, EN(z) can be written in the
following form:

E(z) = PT
M

(
NY

m=1

RmQ(z)

)
Ê0JM ; (3.4)
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where

Rn =

�
Wm O

O Um

�
; (3.5)

Q(z) =
1

2
BM

 
IM

2
O

O z�1IM
2

!
BM ; (3.6)

Ê0 =
1p
2

�
�S O

O �A

� 
IM

2
JM

2

IM
2
�JM

2

!
; (3.7)

whereWm, Um, �S, and�A are M=2�M=2 orthonormal matrices. When N =
0, E0(z) = PT

MÊ0. Equation (3.4) is referred to as the general form of GenLOT.
Substituted Ê0 = R0PMCM , the form yields the expression as in Eq. (2.30).

The analysis process of GenLOT can be expressed by means of the corre-
sponding transform matrix EN as shown in Fig. 3.1, where EN is of size M �
Lh = M � (N + 1)M , and 
 is the parameter which controls the overall system
delay. The parameter 
 will be introduced in the latter discussion, and it does not
affect the property of GenLOT, but with the delay.

The GenLOT matrix EN can be obtained from the following property. Let

Êm = PMEm; (3.8)

where Em is a GenLOT matrix of which overlapping factor is m, that is, M �
(m+ 1)M matrix. Then, Êm can be represented in terms of Êm�1 as follows:

Êm = RmQ

�
Êm�1 ;OM

OM ; Êm�1

�
; (3.9)

where

Q =
1

2
DMBM

�
B�
M O

O B+
M

�
: (3.10)

Hence, the matrixEN can be obtained by recursively using the relation in Eq. (3.9)
from m = 1 to N and the following relation:

EN = PT
MÊN : (3.11)

By controlling matricesWm,Um,�S and�A, any GenLOT can be generated.
In fact, the general form of GenLOT covers any LPPUFB where the number of
decomposition M is even, the length of each filter is a multiple of M and the filter
coefficients are real.

Let hk(n) be the impulse response of Hk(z), then the following relation holds.

hk(n + 
) = [EN ]k;Lh�1�n ; n = 0; 1; 2; � � � ; Lh � 1 (3.12)

where Lh = (N+1)M and [EN ]k;n denotes the k; n-th element ofEN . Each filter
Hk(z) is symmetric for even k and anti-symmetric for odd k.
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0 n

(a) HSHS

0 n

(b) HAHA

Figure 3.2: Examples of symmetric-periodic sequences (SPS). The representative sam-
ples x(n) are marked by open circles.

3.2 Symmetric Extension Method

In practical applications, still images and frames in moving pictures can be re-
garded as finite-duration signals in the horizontal or vertical direction. Note that
linear-convolution of a finite-duration signal with a filter causes a result of longer
duration than the original, that is, the size is increased. To limit the data-size-
increasing, let us consider utilizing the symmetric extension method for GenLOT
in the similar way as discussed in the article [11, 12].

3.2.1 Assumption on Signal Extension

In the following, some assumptions on the proposed structure to avoid the data-
size-increasing by means of the symmetric extension method are shown.

Let M be the number of channels of GenLOT, and x(n) be a finite-duration
signal of length Lx, which has non-zero values only for n = 0; 1; 2 : : : Lx � 1.
Additionally, assume that Lx is a multiple of M as

Lx = LyM; (3.13)

for some positive integer Ly. Linear convolution of the signal x(n) with a filter of
length Lh causes a signal of length Lh+Lx�1. Thus, Lh�1 point size-increasing
causes.

To avoid this data-size-increasing with the symmetric extension method, let us
consider extending x(n) to the type HSHS symmetric-periodic sequences (SPS),
where HSHS is the type of SPS that both the left and right points of representative
samples have half-sample symmetry(HS) as shown in Fig. 3.2 (a) [31].

In the following, �x(n) denotes the SPS of x(n). From the definition, the SPS
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�x(n) is the sequence which satisfies the following equation [33]:

�x

�
Cx + n +

1

2

�
= �x

�
Cx � n� 1

2

�
; (3.14)

where Cx denotes a center of symmetry, which can be represented with an arbi-
trary integer � as

Cx = �1

2
+ �Lx: (3.15)

In addition, there exists the relation �x(n) = x(n) for n = 0; 1; 2; � � � ; Lx � 1, and
the period is 2Lx.

On the other hand, all filters in GenLOT considered here are of length Lh =
(N + 1)M and either symmetric or antisymmetric. Hence, they have a center of
symmetry. The center of the analysis filters Hk(z) provided in Eq. (3.12) can be
expressed as

Ch =
Lh � 1

2
+ 
 =

(N + 1)M � 1

2
+ 
: (3.16)

Let Cy = (Cx + Ch)=M . If Cy satisfies the following equation:

Cy = �1

2
+ �Ly; (3.17)

then the data-size-increasing is avoided. Because the above equation implies that
each subband signal yk(i) is the SPS of either HSHS or HAHA with the cen-
ter Cy and period 2Ly, where HAHA is the type of SPS that both the left and
right points of the representative samples have half-sample antisymmetry (HA) as
shown in Fig. 3.2(b) [31]. With the above Cy, there are Ly representative samples
in each subband signal, and the total results in LyM = Lx representative samples.
Eq. (3.17) is a sufficient condition to avoid the size-increasing. Note that there
is another choice of Cy, that is, Cy = �Ly. Equation (3.17) is, however, proper
because it guarantees that the number of representative samples in each subband
signal is equal to that of the others.

It can easily be verified that Eq. (3.17) is satisfied under the following condi-
tion:


 = �Lh � 1

2
� M � 1

2
= �(N + 2)M � 2

2
: (3.18)

Note that we will assume this choice of 
 in our proposed structure although it
affects the causality of the system. Actually, the non-causality in spatial-domain
is not as important as that in time-domain.
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3.2.2 Number of Extra Samples

The following discusses the number of extra samples caused by the symmetric
extension, where we suppose that Lx > MN=2, which is usually satisfied in
practical applications.

On the assumptions made in the previous section, GenLOT as shown in Fig.
3.1 can be expressed as in Eq. (3.19).

ygi = EN �xi; (3.19)

where �xi is the Lh � 1 vector defined from the SPS �x(n) by

�xi = (�x(iM�
�Lh�1); �x(iM�
�Lh); � � � ; �x(iM�
))T ; (3.20)

and ygi is the M � 1 vector expressed as follows:

ygi = (�y0(i); �y1(i); � � � ; �yM�1(i))
T
; (3.21)

where �yk(i) is the k-th subband signal of �x(n).
Recall that each subband signal �yk(i) is an SPS. In detail, according to the

symmetry of the corresponding filters, yk(i) for even k are HSHS, and for odd k
are HAHA with period 2Ly. These subband signals can be uniquely determined
from their own Ly representative samples �yk(i) for i = 0; 1; 2; � � � ; Ly � 1. This
fact implies that the set of vectors fyg0;yg1; � � � ;ygLy�1g is sufficient to perfectly
reconstruct the original signal x(n) in the synthesis process.

From Eqs. (3.18)(3.19) and (3.20), it can be noticed that Lx+NM samples in
�x(n) for the range from n = �
 � Lh � 1 = �NM=2 to n = (Ly � 1)M + 
 =
Lx + NM=2 are required to obtain the representative subband vectors ygi for
i = 0; 1; 2; � � � ; Ly � 1. In conclusion at here, NM extra samples have to be
operated in this symmetric extension.

3.2.3 Global Matrix Representation

For the discussion in Section 3.3, it is worth globally representing the GenLOT
process with the symmetric extension. Let x be the Lx � 1 vector defined from
the original signal x(n) of length Lx by

x =
�
x(0); x(1); � � � ; x(Lx � 1)

�T
: (3.22)

In addition, let yg be the Lx � 1 vector defined by

yg =
�
yTg0;y

T
g1; � � � ;yTgLy�1

�T
; (3.23)
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which consists of the representative subband signals.
Then, the following global matrix representation can be given.

yg = �PT �FN;N�
(J)
M
2
N
x; (3.24)

where �P is the Lx � Lx matrix defined by �P = �PLy�1
`=0 PM , �Fn;m is the (Lx +

(n�m)M)� (Lx + nM) matrix defined by

�Fn;m =

0
BBB@

Êm ;OM ;

OM ; Êm ; O
. . .

O ; Êm

1
CCCA ; (3.25)

and �(J)
n is the (Lx + 2n)� Lx matrix defined for n < Lx by

�(J)
n =

0
@Jn O

ILx
O Jn

1
A ; (3.26)

which symmetrically extends the input vector. It can be noticed that

3.3 Efficient Structure

As was mentioned in the previous section, there are some redundant operations in
Eq. (3.24). In the following, let us consider removing them.

3.3.1 Elimination of Redundancy

Let us consider eliminating the redundancy in the GenLOT as in Eq. (3.24).
Rewriting the right hand side of Eq. (3.9) in terms of Êm�2 by recursively

applying itself once more, we have

Êm = Gm

0
@ Êm�2 ;OM ;OM

OM ; Êm�2 ;OM

OM ;OM ; Êm�2

1
A ; (3.27)

where Gm is the M � 3M matrix expressed as follows:

Gm = RmQ

�
Rm�1Q ;OM

OM ; Rm�1Q

�
: (3.28)
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By using Gm, let us define the (Lx + (n �m)M) � (Lx + (n �m + 2)M)
matrix �Sn;m by

�Sn;m =

0
BBB@

Gm ;OM ;

OM ; Gm ; O
. . .

O ; Gm

1
CCCA : (3.29)

For even N

For an even overlapping factor N , Eq. (3.24) can be rewritten in terms of �Sn;m as
follows:

yg = �PT �SN;N �SN;N�2 � � � �SN;2 �FN;0�
(J)
M
2
N
x: (3.30)

From the following lemma, the extra operations can be removed.

Lemma 3.1. Let us define the following M � 2M matrices G�
m, G�

m by

G�
m =

1

4
Zm

�
2Wm�1 O

O B+
MZm�1

��
BM O

O B+
M

�
; (3.31)

G�
m =

1

4
Zm

�
B�
MZm�1 O

O 2Wm�1

��
B�
M O

O BM

�
; (3.32)

where Zm = RmDMBM , and the Lx � Lx matrix Sm by

Sm =

0
BBBBBBB@

G�
m ;OM ;OM ;

Gm ;OM ; O

OM ; Gm ;
. . .

O ; Gm

;OM ;G
�
m

1
CCCCCCCA
: (3.33)

Then, Eq. (3.30) can be reduced to

yg = �PTSNSN�2 � � �S2F0x; (3.34)

where F0 = �F0;0 = �
PLy�1

`=0 Ê0.

Proof. The matrix Ê0 has the property that Ê0JM = DMÊ0. From this, the
following relation can be derived:

�FN;0�
(J)
M
2
N
= �

(D)
M
2
N
F0; (3.35)
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where �(D)
n is the (Lx + 2n)� Lx extension matrix for n < Lx defined by

�(D)
n =

0
@ �Dn O

ILx
O �Dn

1
A ; (3.36)

where �Dn is the n� n matrix defined, when n is a multiple of M , by

�Dn =

0
BBB@
O � � � O DM

O � � � DM O
...

...
...

...
DM � � � O O

1
CCCA : (3.37)

In addition, the matrix Gm has the following properties:

Gm

0
@ O DM

DM O

IM O

1
A = DMG

�
m; (3.38)

Gm

0
@ O IM
O DM

DM O

1
A = DMG

�
m; (3.39)

and

Gm

0
@ O O DM

O DM O

DM O O

1
A = DMGm: (3.40)

Thus, the following relation can be derived:

�SN;m�
(D)
M
2
(N+2�m)

= �
(D)
M
2
(N�m)

Sm: (3.41)

Applying Eqs. (3.35) and (3.41) to Eq. (3.30), we can obtain the relation that

yg = �PT �SN;N �SN;N�2 � � � �SN;2�(D)
M
2
N
F0x

= �PT �SN;N �SN;N�2 � � ��(D)
M
2
(N�2)S2F0x

...

= �PT �SN;N�
(D)
M SN�2 � � �S2F0x: (3.42)

Consequently, Eq. (3.34) is proved.
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Figure 3.3: Structures of GenLOT for finite-duration sequences.
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odd channels. As an example, the structure of P8 is also given. Reversing
the direction of each arrow results in �PT .
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letters ‘E’ and ‘O’ denote the even and odd channels.
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Equation (3.34) implies that the redundancy caused by the signal extension is
removed. Note that all of the matrices Sm, �R0, �P and F0 are of size Lx � Lx
and do not require any signal extension. Figure 3.3 (a) shows the structure for
finite-duration sequences. The structures for �P and �R0 are also given in Figs. 3.4
and 3.5, respectively. �PT is implemented by reversing the direction of each arrow
in the structure shown in Fig. 3.4. Besides, the structure of Sm can be represented
as shown in Fig. 3.6, since Eq. (3.33) is rewritten as follows:

Sm =
1

4
�Zm

0
@2Wm�1 O O

O ��B��Zm�1 O

O O 2Wm�1

1
A �B; (3.43)

where �Zm = �PLy�1
`=0 Zm and �B = �PLy�1

`=1 BM . Besides, ��Zm = �PLy�2
`=0 Zm

and ��B = �PLy�2
`=0 BM .

For odd N

For an odd number of overlapping factor N , Eq. (3.24) can be rewritten in terms
of �Sn;m as follows:

yg = �PT �SN;N �SN;N�2 � � � �SN;3 �FN;1�
(J)
M
2
N
x: (3.44)
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Lemma 3.2. Let us define the following M � (M +M=2) matrices Ê�
1 , Ê�

1 and
Lx � Lx matrix F1.

Ê�
1 =

1

2
Z1

 p
2�SJM

2
O

O B+
MÊ0

!
; (3.45)

Ê
�
1 =

1

2
Z1

�
B�
MÊ0 O

O
p
2�S

�
; (3.46)

F1 =

0
BBBBBBB@

Ê�
1 ;OM ;OM ;

Ê1 ;OM ; O

OM ; Ê1 ;
. . .

O ; Ê1

;OM ;Ê
�
1

1
CCCCCCCA
: (3.47)

Then, Eq. (3.44) can be reduced to

yg = �PTSNSN�2 � � �S3F1x: (3.48)

Proof. Ê1 given in Eq. (3.9) has the properties that

Ê1J2M = DMÊ1; (3.49)

Ê1

0
@ O JM
JM

2
O

IM
2

O

1
A = DMÊ

�
1 ; (3.50)

Ê1

0
@ O IM

2

O JM
2

JM O

1
A = DMÊ

�
1 : (3.51)

Thus, there exists the following relation:

�FN;1�
(J)
M
2
N
= �

(D)
M
2
(N�2)F1: (3.52)

As a result, in the similar way to the proof for Lemma 1, Eq. (3.44) is proved.

Equation (3.44) implies that GenLOT with the symmetric extension method
for odd N can also be implemented with no signal extension.
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3.3.2 Computational Complexity

Now, let us discuss the computational complexity of the proposed structure. The
efficiency by comparing with the structure corresponding to Eq. (3.24), that is, the
redundant one will be shown. In the following, let us assume that the DCT-based
fast GenLOT described in Section 2.2.1 is applied.

Let �(EN) and �(EN) be the numbers of multiplications and additions of EN

per block, respectively. Then, �(EN) and �(EN) are obtained as follows:

�(EN) = �1(EN) + ��; (3.53)

�(EN) = �1(EN) + ��; (3.54)

where �1(EN) and �1(EN) are the numbers of multiplications and additions of
EN per block for infinite-duration signals (Section 2.2.1). These are provided as
follows:

�1(EN) = �(CM) + (N+1)�(U) (3.55)

�1(EN) = �(CM) + (N+1)�(U) +NM; (3.56)

where �(CM) and �(CM) denote the numbers of multiplications and additions of
CM per block, respectively, and �(U) and �(U) are those of Um, respectively.
�(U) and �(U) are provided as �(U) = �(U) = 3(M � 2)=2.

�� and �� depend on the way of the realization for finite-duration signals. If we
construct the system based on Eq. (3.24), that is, the redundant structure, those
are provided as follows:

�� =
N

Ly

�
�(CM) +

N + 1

2
�(U)

�
; (3.57)

�� =
N

Ly

�
�(CM) +

N + 1

2
�(U) +NM

�
: (3.58)

On the other hand, those of the proposed structure for even N result in

�� = � 1

Ly

�
N

2
�(U)

�
; (3.59)

�� = � 1

Ly

�
N

2
�(U) +NM

�
; (3.60)

and for odd N ,

�� = � 1

Ly

�
�(CM)� 2�(CM

2
) +

N + 1

2
�(U)

�
; (3.61)

�� = � 1

Ly

�
�(CM)� 2�(CM

2
) +

N + 1

2
�(U) +NM

�
: (3.62)
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Table 3.1: Computational complexity of the DCT-based fast GenLOT with the symmetric
extension, for M = 8, Lx = 256 (Ly = 32).

N Redundant Structure Proposed Structure
�(EN ) �(EN ) �(EN ) �(EN )

0 22.00 38.00 22.00 (100.0%) 38.00 (100.0%)
1 31.69 56.44 30.62 ( 96.6%) 54.12 ( 95.9%)
2 41.66 75.66 39.72 ( 95.3%) 71.22 ( 94.1%)
3 51.91 95.66 48.34 ( 93.1%) 87.34 ( 91.3%)
4 62.44 116.44 57.44 ( 92.0%) 104.44 ( 89.7%)
5 73.25 138.00 66.06 ( 90.2%) 120.56 ( 87.4%)
6 84.34 160.34 75.16 ( 89.1%) 137.66 ( 85.9%)

In the above equations, the division with a power of two, such as 1=2 and 1=4, and
the multiplication with �1 are not taken into account.

Table 3.1 shows the computational complexity of the structures with the signal
extension expressed as in Eq. (3.24) and the proposed structure expressed as in
Eqs. (3.34)(3.48), where it is assumed that M = 8 and Lx = 256 (Ly = 32), and
the Wang’s algorithm is used for DCT (�(C8) = 13 and �(C8) = 29) [30, 34].
From Table 3.1, it can be noticed that, when the overlapping factor N is equal to
or greater than 1, the proposed structure can save the computational complexity,
for example, about the 5% saving are achieved when N = 2.

3.3.3 Structure of the Inverse GenLOT

From the PU property of GenLOT, the structure of the synthesis process, that is,
the inverse transform, is simply obtained from that of the analysis process, that is,
the forward transform.

Let FN = �PTSNSN�2 � � �S2F0 for even N and FN = �PTSNSN�2 � � �S2F1

for odd N , then yg can be expressed as

yg = FNx: (3.63)

Note that the matrix F0 is orthonormal. In addition, from the fact that G�
mG

�T
m =

IM , G�
mG

�T
m = IM , and GmG

T
m = IM , the orthonormality of Sm is verified.

Furthermore, from the fact that Ê1Ê
T
1 = IM ,Ê�

1 Ê
�T
1 = IM and Ê�

1 Ê
�T
1 = IM , F1

is also orthonormal. Therefore, the following relation holds.

FT
NFN = FNF

T
N = ILx: (3.64)

As a result, FN is orthonormal. Thus, the synthesis process can be achieved by
processing from right to left and transposing each matrix in Fig. 3.3.
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3.3.4 Structure forM -Band DTWT

Next, it is shown that the proposed structure can be applied to the construction of
the linear-phase orthonormal M -band DTWT for finite-duration sequences.

The M -band DTWT can be realized by band decomposition of the channels
of the low-pass filter H0(z) in the M -channel filter bank, using the tree algorithm
[35]. When the filter bank has the PU and LP properties, the generated DTWT
is orthonormal and has the LP property. Thus, using GenLOT, it is possible to
generate an orthonrmal linear-phase M band DTWT [14].

The following discussion will be based on the structure shown in Fig. 3.1,
where it is assumed that the matrix EN is given by Eqs. (3.9) and (3.11), and 


is given by Eq. (3.18). In addition, it is assumed that the original signal x(n) of
length Lx is extended to the type-HSHS SPS �x(n), which is input to the DTWT.

Lemma 3.3. Let �y(1)k (i1) be k-th subband channel output of the first-level, which
is obtained by carrying out GenLOT on �x(n), and �y(`)k (i`) be k-th subband channel

output of the `-th level, which is obtained by carrying out GenLOT on �y
(`�1)
0 (i`�1)

for ` = 2; 3; 4; � � � ;L.
If the input length Lx is given as

Lx = LyLML (3.65)

for an arbitrary positive integer LyL, then �y
(`)

k (i`) is HSHS for even k and HAHA
for odd k, where the representative numbers of samples is Ly` = LyLML�`.

Proof. Lx satisfies the condition given in Eq. (3.13). Therefore, as discussed in
Section 3.2.1, �y(1)k (i1) results in HSHS for even k and HAHA for odd k, where the
number of the representative samples is Ly1 = LyLML�1. Since �y

(1)
0 (i1) is SPS

of HSHS of length Ly1, �y
(2)

k (i2) also results in HSHS for even k and HAHA for
odd k. Obviously, the number of the representative samples is Ly2 = LyLML�2.
As a result, this discussion can be repeated until the level L is reached, and the
conclusion is obtained.

As discussed in Lemma 3.3, the process of GenLOT in each level is carried out
under the assumption described in Section 3.2.1. Therefore, under the condition of
Eq. (3.65), the proposed structure of GenLOT for finite-duration sequences can be
directly applied in each level. As a result, for the entire M -band DTWT, avoiding
the size-increasing with the symmetric extension method can be realized without
redundancy.
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3.4 Application to JPEG/MPEG-Compatible SBC

Representative international standards of image coding, such as JPEG (Joint Pho-
tographic coding Experts Group) for still images and MPEG (Moving Picture Ex-
perts Group) 1 and 2 for moving pictures, use the block DCT coding technique,
because of its efficiency and good energy compaction [30]. The block DCT cod-
ing technique, however, has the disadvantage of blocking artifacts. To achieve
better energy compaction and avoid these artifacts, subband coding of images is
expected to become an alternative technique to the block DCT coding.

When constructing a SBC system, compatibility with JPEG or MPEG should
be maintained so that the system succeeds these standards, where compatibility
means the ability of the SBC systems to encode and decode the standard bit-
streams. To construct such systems efficiently, the hardware-modules or software-
routines processing subband signals, such as quantization and entropy coding,
should be used in common with those for the DCT coefficients. As a result, the
area on VLSI or amount of required memory is saved. In addition, it is favorable
to simply achieve the compatibility that filter banks consist of the block DCT
employed in the standard algorithms. So far, however, the most interests of SBC
have been on the coding performance, and the compatibility have been rarely
discussed. Although the LOT of finite-duration sequences was provided [22, 31],
the block DCT is half-shifted as compared with that of the standards [22, 31].

To achieve the purpose, let us consider applying the DCT-based fast GenLOT
for finite-duration sequences developed in the previous section to the system.

3.4.1 Block DCT

Before discussing the SBC systems which are compatible with the standards, let
us briefly review the block DCT codec system. Figure 3.7 shows the simplified
representation of the structure.

Let M be the size of DCT, and let x(n) be a finite-duration signal of length
Lx, which has non-zero values only for n = 0; 1; 2 : : : Lx � 1. Assume that Lx is
a multiple of M as in Eq. (3.13). The basic procedure of the block DCT coding of
size M is as follows:

Firstly, the input signal x(n) is segmented into blocks of size M as

xi =
�
x(iM) x(iM + 1) � � � x(iM +M � 1)

�T
; (3.66)

where xi is the i-th input block of the M � 1 vector. Secondly, the DCT of each
block xi is performed as

yci = CMxi; (3.67)
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Figure 3.7: A simplified representation of the structure of the block DCT coding sys-
tem in the global representation. Decoding can be achieved by reversing the
direction of each arrow and transposing the matrix �C.

where yci denotes the i-th DCT of the vector xi. Lastly, each yci is processed,
for example, quantized and entropy-coded. In MPEG, the difference between an
original and the motion-compensated predictive signals are used as the input to
the DCT.

It is worth globally representing the block DCT. Let x be the Lx � 1 vector
defined from the original signal x(n) of length Lx as in Eq. (3.22). Then, the
block DCT can also be expressed as follows:

yc = �Cx; (3.68)

where �C is the Lx � Lx matrix defined by �C = �PLy�1
`=0 CM , and

yc =
�
yTc0 yTc1 � � � yTcLy�1

�T
: (3.69)

From the orthonormality of �C, the decoder can be constructed by reversing
the direction of each arrow and transposing the matrix �C in the structure shown in
Fig. 3.7.

3.4.2 Requirements

In this thesis, we consider that the analysis-synthesis systems which satisfy the
following requirements have to be used in the SBC systems which are compatible
with the standards, as well as the PU and LP properties.

First requirement is the identical format of subband signals with the transform
coefficients of the block DCT, such as the size of and the number of blocks so that
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subband signals can be processed in common with the transform coefficients of
the block DCT. Second requirement is that the redundancy caused by the signal
extension has to be removed. This is because signal extension causes the pre-
processing to extend the input signals and the post-processing to limit the output
signals, as well as the redundant operations and the use of extra memory. The last
requirement is that filter banks have to consist of the identical block DCT with the
standard algorithms, since the overall structure of the compatible SBC system can
be simplified by using the block DCT in common.

The LOT of finite-duration signals satisfies the identical format and achieves
the symmetric extension approach without redundancy. However, the block DCT
is half shifted and it does not consist of the identical block DCT with the stan-
dards. With the same reason, the proposed structure for odd-channel GenLOT in
Fig. 3.3 (b) is not favorable. However, the proposed structure for an even number
of channels shown in Fig. 3.3 (a) can yield the structure based on the identical
block DCT with the standards.

3.4.3 Module/Routine Sharing

Equation (3.23) shows that the set of subband signals yg has the identical format
with that of yc in Eq. (3.69). Note that the choice of 
 in Eq. (3.18) makes it
possible. In addition, Eqs. (3.34) and (3.48) imply that the redundancy caused by
the signal extension is removed.

For the DCT-based GenLOT given in Eq. (2.30), Eq. (3.34) can be rewritten
as follows:

yg = �PTSNSN�2 � � �S2 �R0
�P �Cx; (3.70)

where �R0 = �PLy�1
`=1 R0. The above equation shows that the DCT-based Gen-

LOT with the symmetric extension can be implemented with the block DCT as
in Eq. (3.68). In contrast, even applied Eq. (2.30), Eq. (3.48) does not include
the block DCT as in Eq. (3.68), since each DCT is half-shifted as compared with
one in Eq. (3.68) in the same way to the conventional LOT for finite duration
sequences [22, 31].

In conclusion at here, GenLOT with the symmetric extension method can be
removed its redundancy, so that the structure for even N includes the block DCT
as in Eq. (3.68). However, the statement is not true for odd N on the assumption
made in Section 3.2.1. Hence, in the following, let us consider only for the case
of even N .

Figure 3.8 shows a simplified JPEG/MPEG-compatible SBC system based on
the proposed GenLOT structure. As was mentioned before, the international stan-
dard algorithms for image coding, such as JPEG and MPEG, employ the block
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DCT codec technique. In the proposed system shown in Fig. 3.8, if we choose
the bottom path for DCT (denoted by the dashed line), the system generates bit-
streams coded with the standard DCT coder. If we choose the top path for Gen-
LOT (denoted by solid line), however, it generates bit-streams coded with Gen-
LOT.

Obviously, the block DCT process can be used both of the DCT-based and
the GenLOT-based systems in common. In addition, since the subband signals
yg can have the same block size, for example M = 8, and the same number
of blocks Ly with those of yc, the processing for yg, such as quantization and
entropy-coding, can also be implemented in common with those for yc. In other
words, when the system is realized by hardware, modules of the block DCT and
the processing after DCT and GenLOT can be shared, and then the area on VLSI
results in smaller than that of the separate realization. In case of software, the
corresponding routines can be shared, and then amount of required memory is
saved.

The problem left here is how to choose quantization and Huffman tables. This
problem is, however, trivial in the implementation because these tables are multi-
plexed to the bit-streams and not specified even in both JPEG and MPEG. Thus,
the system satisfies all the requirements stated in the Section 3.4.2. Furthermore,
the DCT-based fast implementation described in Section 2.2.1 can be applied di-
rectly. Note that the statements here still hold in the two dimensional separable
applications.

Equation (3.64) implies that a JPEG/MPEG-compatible subband decoding
system can be obtained by reversing the direction of each arrow and transposing
each matrix in the structure shown in Fig. 3.8. Note that my proposed structure
of GenLOT does not yield different results from that of the conventional DCT-
based GenLOT with the symmetric extension method (Chapter 2). Hence, any
design result of the DCT-based GenLOT can be directly applied, and the coding
performance holds.

3.5 Summary

In this chapter, a structure of GenLOT for finite-duration sequences was proposed
so as to remove the redundancy caused by the symmetric extension method, and
to limit the number of subband samples so that the total number of them equals
to the number of original ones. In fact, the structure does not require any re-
dundant operations involved in the extension of sequences. The proposed struc-
ture was shown to have less computational complexity than that of the direct
symmetric-extension approach. An M -band discrete-time wavelet transform for
finite-duration sequences was also discussed, and the condition for the number of
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channels M was indicated.
In addition, we considered applying the proposed structure to the SBC systems

which are compatible with JPEG and MPEG. As a result, it becomes possible
that, when the system is realized by hardware, modules of the block DCT and
the processing after DCT and GenLOT can be shared. In case of software, the
corresponding routines can be shared. Hence, the SBC systems can simply encode
or decode the standard bit-streams.



Chapter 4

MD Linear-phase Paraunitary Filter
Banks

A lattice structure of multidimensional (MD) real-coefficient linear-phase parau-
nitary filter banks is proposed, which makes it possible to design such systems in
a systematic manner. The proposed structure can produce MD-LPPUFBs whose
filters all have the region of supportN (M�), whereM and� are the decimation
and positive integer diagonal matrices, respectively, andN (N) denotes the set of
integer vectors in the fundamental parallelepiped (FPD) of a matrix N [1]. It is
shown that ifN (M) is reflection invariant with respect to some center, then the re-
flection invariance of N (M�) is guaranteed. This fact is important in construct-
ing MD linear phase filter banks, because the reflection invariance is necessary for
any linear phase filter. Since the proposed system structurally restricts both the pa-
raunitary and linear-phase properties, an unconstrained optimization process can
be used to design MD-LPPUFBs. The proposed structure is developed for both an
even and an odd number of channels, and includes the conventional 1-D system as
a special case. It is also shown to be minimal, and the no-DC-leakage condition
is presented. Some design examples will show the significance of the proposed
structure for both the rectangular and non-rectangular decimation cases.

The following notation is used throughout this chapter.

D : the number of dimensions.

z : a D�1 vector which consists of variables in a D-dimensional Z-domain, that
is, z = (z0; z1; � � � ; zD�1)T .

zm : a product defined by

zm = zm0

0 zm1

1 � � � zmD�1

D�1 ; (4.1)

where m is a D � 1 integer vector, and mk denotes the k-th element of m.

63
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zM : a D � 1 vector whose d-th element is defined by�
zM
�
d
= z

M0;d

0 z
M1;d

1 � � � zMD�1;d

D�1 ; (4.2)

where M is a D�D nonsingular integer matrix, and Mk;` denotes the k-th
row and `-th column element of M.

1 : the D � 1 vector whose elements are all ‘1’.

1S : the D � 1 vector defined by [1S]k = 1 for k 2 S, otherwise 0, where
S � f0; 1; � � � ; D � 1g.

N : the set of D � 1 integer vectors.

N (N) : the set of integer vectors in the fundamental parallelepiped generated
with a D �D nonsingular integer matrix N, which is defined by N (N) =
fNx 2 Njx 2 [0; 1)Dg, where [a; b)D denotes the set of D � 1 vectors x
so that the d-th component satisfies a � xd < b [1].

J(N) = jdet(N)j : the absolute determinant of N, which equals the number of
elements inN (N).

In addition, the superscript ‘T ’ on a vector or matrix denotes the transposition.
Furthermore, the tilde notation ‘~’ over a vector or matrix denotes the paraconju-
gation [1], for example ~E(z) = ET

� (z
�1), where the subscript ‘�’ denotes the

complex-conjugation of the coefficients.

4.1 Linear-phase Property

As a preliminary, this section reviews the LP condition of MD filters, and deals
with the reflection invariance of their region of support.

4.1.1 MD-LP Filters

Let H(z) be a D-dimensional filter. If H(z) satisfies Eq. (4.3), it is said to be
linear-phase (LP).

H(z) = z�2ch
H(z�I); (4.3)

where ch is a D � 1 vector, which represents the center of filter H(z), and ch 2
1
2
N . 
 is ‘1’ when the filter H(z) is symmetric and ‘�1’ when it is antisymmetric

with respect to (w.r.t.) the center ch.
In the following, a theorem with regard to the region of support is shown.
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rh(n)

ch

n

Figure 4.1: Reflection with respect to ch(D = 2).

Theorem 4.1. Let Nh be the region of support of a filter H(z). If the filter H(z)
is linear-phase, then the following equation holds:

frh(n)jn 2 Nhg = Nh; (4.4)

where ch is the center and rh(n) = 2ch � n, the reflection w.r.t. ch (see Fig. 4.1).

Proof. As the time-domain representation of Eq. (4.3), we have

h(n) = 
h(rh(n)): (4.5)

Hence, the relation N 0
h = frh(n)jn 2 Nhg � Nh holds. In addition, it can be

verified that frh(rh(n))jn 2 Nh � N 0
hg � N 0

h . The fact that rh(rh(n)) = n

implies that Nh �N 0
h � N 0

h. The only solution isN 0
h = Nh. Therefore, Eq. (4.4)

holds.

The property expressed by Eq. (4.4) is referred to as reflection invariance, and
such a region of support is said to be reflection invariant.

4.1.2 Polyphase Representation

Taking Theorem 4.1 into account, let us present the LP condition in the polyphase
representation.

Any MD filter H(z) can be represented in terms of the polyphase filters with
a nonsingular integer matrix M, which is referred to as a decimation matrix or
factor, as follows:

H(z) =
X

m2N (M)

z�mEm(zM); (4.6)
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where Em(z) denotes the m-th type-I polyphase filter of H(z) w.r.t. the decima-
tion matrix M [1].

Now, let us show three lemmas with regard to extension of the region of sup-
portN (M), and consider the LP property in the polyphase representation. In the
following, we let� = diag(N0+1; N1+1; � � � ; ND�1+1) with positive integers
Nd, and refer to � as an extension matrix.

Lemma 4.2. Consider an extension matrix �. The region of support N (�) is
reflection invariant w.r.t. the following center:

c� =
1

2
�n; (4.7)

where �n = (N0; N1; � � � ; ND�1)T .

Proof. Since the region of support N (�) forms a hyper-cube, the relation f�n �
njn 2 N (�)g = N (�) holds. Hence, the reflection invariance is satisfied w.r.t.
the center c� in Eq. (4.7).

Lemma 4.3. Consider the product of a decimation matrix M with an extension
matrix �, that is, M�. The region of support N (M�) is expressed as follows:

N (M�) = fMi+mji 2 N (�);m 2 N (M)g: (4.8)

Proof. From the fact that f�xjx 2 [0; 1)Dg = fi+ xji 2 N (�);x 2 [0; 1)Dg,
N (M�) = fM�x 2 Njx 2 [0; 1)Dg

= fM(i+ x) 2 Nji 2 N (�);x 2 [0; 1)Dg
= fMi+Mx 2 Nji 2 N (�);x 2 [0; 1)Dg:

(4.9)

Since fMx 2 Njx 2 [0; 1)Dg = N (M) andMi 2 N , Eq. (4.8) is obtained.

Lemma 4.4. If and only if N (M) is reflection invariant w.r.t. some center cM ,
the extended region of support N (M�) is also reflection invariant w.r.t. the fol-
lowing center ch:

ch =Mc� + cM ; (4.10)

where c� is the center of N (�).

Proof. From the assumption and Lemma 4.2, N (M) and N (�) are reflection
invariant. Hence, the following equations are satisfied:

N (M) = frM(m)jm 2 N (M)g; (4.11)

N (�) = fr�(i)ji 2 N (�)g; (4.12)
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cM

(a) N (M)

ch

(b) N (M�)

Figure 4.2: An example of extension (D = 2). cM and ch are the centers of N (M) and
N (M�), respectively

where rM(m) = 2cM �m and r�(i) = 2c� � i.
The above relations and Lemma 4.3 then lead to

N (M�) = fMr�(i) + rM(m)ji 2 N (�);m 2 N (M)g
= f2(Mc�+cM)� (Mi+m)ji 2 N (�);m 2 N (M)g
= frh(k)jk 2 N (M�)g;

(4.13)

where rh(k) = 2(Mc� + cM)� k. That is, N (M�) is reflection invariant w.r.t.
Mc� + cM .

Conversely, if N (M�) is reflection invariant w.r.t. some center ch, then

N (M�) = f2ch � kjk 2 N (M�)g
= f2ch � (Mi+m)ji 2 N (�);m 2 N (M)g
= fMr�(i) + (2(ch�Mc�)�m)ji 2 N (�);m 2 N (M)g
= fMi+ (2(ch�Mc�)�m)ji 2 N (�);m 2 N (M)g:

(4.14)

Comparing this result with Eq. (4.8), it can be proven that N (M) is reflection
invariant w.r.t. cM = ch �Mc�.

Lemma 4.4 guarantees that the region of support N (M) can be extended by
the matrix�while holding the reflection invariance. Figure 4.2 shows an example
of the extension, where M = ( 2 1

2 �1 ), � = ( 1 0
0 2 ) and �n = ( 01 ).

On the basis of these lemmas, let us show the LP condition in the polyphase
representation.
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Theorem 4.5. Consider an MD filter H(z) with an extended region of support
N (M�) and let Em(z) be the m-th type-I polyphase filter w.r.t. M. If and only
if H(z) is LP with some center ch, then the following equation holds:

Em(z) = z�2c�
ErM (m)(z
�I); m 2 N (M); (4.15)

where c� is the center of N (�) and rM(m) = 2cM �m, and cM = ch �Mc�.
Additionally, 
 is ‘1’ for a symmetric filter or ‘�1’ for an antisymmetric filter.

Proof. From Lemma 4.4, N (M) is reflection invariant w.r.t. the center cM .
Hence, Eq. (4.3) is expressed as

H(z) = z�2ch
H(z�I)

= z�2(Mc�+cM )

X

m2N (M)

zmEm(z
�M)

= z�2Mc�

X

m2N (M)

z�rM(m)Em(z
�M)

=
X

m2N (M)

z�m
�
z�2Mc�
E

rM (m)(z
�M)

	
:

(4.16)

Compared with Eq. (4.6), Eq. (4.16) leads to Eq. (4.15).

Note that the vector 2c� consists of the order of the polyphase matrix E(z),
that is, 2c� = �n = (N0; N1; � � � ; ND�1)T .

4.1.3 Ordering of Em(z)

Now, for the sake of convenience, let us order the polyphase filters E
m
(z) and

modify their indexes as follows:

E`(z) = Em`
(z); ` = 0; 1; 2; � � � ;M � 1; (4.17)

where m` 2 N (M) and M = J(M). By using this notation, let us define an
M � 1 polyphase vector e(z) by

e(z) =
�
E0(z) E1(z) � � � EM�1(z)

�T
: (4.18)

This vector e(z) is related to H(z) as follows:

H(z) = eT (zM)d
M
(z); (4.19)

where

d
M
(z) =

�
z�m0 z�m1 � � � z�mM�1

�T
; m` 2 N (M): (4.20)
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(a) Parallel structure
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(b) Polyphase structure.

Figure 4.3: Structures of MD maximally decimated uniform filter banks.

On the assumption thatN (M) is reflection invariant, the polyphase filters can
always be ordered so as to satisfy the following condition:

rM(m`) =mM�1�`; ` = 0; 1; 2; � � � ;M � 1: (4.21)

If the elements are ordered according to the above rule, then the LP condition in
Eq. (4.15) simplifies to

eT (z) = z�2c�
eT (z�I)JM : (4.22)
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4.2 MD-LPPU Filter Banks

In this section, let us review multidimensional (MD) maximally decimated uni-
form filter banks and discuss the paraunitary (PU) and linear-phase (LP) proper-
ties. The class dealt with in this thesis is also clarified.

4.2.1 Review of MD Filter Banks

Figure 4.3 (a) shows a parallel structure of MD maximally decimated uniform
filter banks with a factor M, where # M and " M denote the down- and up-
samplers with the factorM, respectively. The number of channels is M = J(M).
IfM is a diagonal matrix, then we refer to such systems as rectangular decimation
filter banks, otherwise they are non-rectangular decimation filter banks.

Decomposing each filter into the polyphase filters, the parallel structure can
be equivalently represented as shown in Figure 4.3 (b), where E(z) is the type-I
polyphase matrix of analysis bank and R(z) is the type-II polyphase matrix of
synthesis bank [1]. These polyphase matrices are related to Hk(z) and Fk(z) as
follows:

h(z) =

0
BBB@

H0(z)
H1(z)

...
HM�1(z)

1
CCCA = E(zM)d

M
(z); (4.23)

f(z) =
�
F0(z) F1(z) � � � FM�1(z)

�T
= dT

M
(z�I)R(zM):

(4.24)

4.2.2 Class of Filter Banks

In order to clarify which class of filter banks is dealt with in this thesis, the prop-
erties that the proposed filter banks possess are shown.

Paraunitary (PU) property

Let us construct MD filter banks to be paraunitary (PU) [1]. If the polyphase
matrix E(z) satisfies Eq. (4.25), it is said to be paraunitary.

~E(z)E(z) = IM : (4.25)

This condition is sufficient to construct perfect reconstruction (PR) filter banks,
because the simple choice of the synthesis bank as R(z) = z�n ~E(z) with some
D� 1 integer vector n results in R(z)E(z) = z�nIM , which shows the system is
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PR [1]. Thus, in the following, only an analysis bank is dealt with. Since filters
are let to have real coefficients, we actually consider those holding the property
ET (z�I)E(z) = IM .

Linear-phase (LP) property

The individual filters in the proposed filter banks are designed to be linear-phase.
In order to guarantee this property, let us choose the factor M such that N (M)
is reflection invariant w.r.t. some center cM , and let the region of support of the
filters be N (M�) according to Theorem 4.5 by using an extension matrix �.

Since the LP property of each filter Hk(z) can be expressed as in Eq. (4.22)
in terms of its polyphase vector, the LP property of analysis bank E(z) can be
represented as follows:

E(z) = z�2c�DME(z
�I)JM ; (4.26)

where we assume that Hk(z) for k = 0; 1; � � � ; dM=2e � 1 are symmetric and the
rest are antisymmetric.

Here, note that the polyphase components are ordered according to Eq. (4.21),
and the number of symmetric and antisymmetric filters are determined on the
basis of Theorem 4.6, which is proven in the same way as Theorem 1 shown in
the article [10].

Theorem 4.6. Consider matrix-M LP PR filter banks, whose filters all have the
extended region of supportN (M�).

1. If M = J(M) is even, there are M=2 symmetric and M=2 antisymmetric
filters.

2. If M = J(M) is odd, there are (M + 1)=2 symmetric and (M � 1)=2
antisymmetric filters.

Proof. Primarily, the LP condition is represented as E(z) = z�2c��ME(z�I)JM
instead of Eq. (4.26), where �M is an arbitrary M �M diagonal matrix whose
diagonal elements are ‘1’ or ‘�1’.

By taking the trace of both sides of Eq. (4.26) and using the fact that E(z) is
invertible, we have

tr(�M) = tr(z2c�E(z)JME
�1(z�I))

= tr(z2c�E�1(z�I)E(z)JM);
(4.27)

where tr(N) is the trace of N. This equation should be satisfied for any value of
z. Let us substitute z = 1 into this.

tr(�M) = tr(E�1(1)E(1)JM)

= tr(JM):
(4.28)
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The last equation implies that tr(�M) = 0 for even M and tr(�M) = 1 for odd
M . In other words, if M is even, then the number of symmetric filters is equal
to the number of antisymmetric ones, and if M is odd, then there is one extra
symmetric filter.

Causality

Let E(z) be causal in all dimensions, since many results on 1-D LPPUFBs are
derived under the condition that polyphase matrices are causal. Under this as-
sumption, most of the results can be applied to MD ones. Note that this does not
necessarily mean the causality of h(z), which depends on the choice of the factor
M.

For example, let us consider the 2-D case that the factor is given by M =
( 2 1
2 �1 ) and the polyphase matrix is provided as

E(z) =

0
BBB@
1 0 0 z�1

f0g

0 1 z�1
f0g

0

1 0 0 �z�1f0g
0 1 �z�1f0g 0

1
CCCA ; (4.29)

where z�1
f0g

= z�10 . The above matrix is easily found to be causal in all dimen-
sions. From Eq. (4.23), it can observe that the corresponding analysis filters can
be expressed as

h(z) =

0
BBB@
1 0 0 z�M1

f0g

0 1 z�M1
f0g

0

1 0 0 �z�M1
f0g

0 1 �z�M1
f0g

0

1
CCCA
0
BB@

1
z�10 z�11
z�10

z�20 z�11

1
CCA

=

0
BB@
1 0 0 z�10 z1
0 1 z�10 z1 0
1 0 0 �z�10 z1
0 1 �z�10 z1 0

1
CCA
0
BB@

1
z�10 z�11
z�10

z�20 z�11

1
CCA

=

0
BB@

1 + z�30
z�10 z�11 + z�20 z1
z�10 z�11 � z�20 z1

1� z�30

1
CCA : (4.30)

This last equation illustrates that the analysis bank is not causal because the ad-
vance operator z1 is involved, but this is permissible under the proposed structure.
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4.3 Lattice Structure

In the previous section, the class of filter banks dealt with in this thesis was dis-
cussed. This section provides the proposed lattice structure for such filter banks.
In the following, the structure for an even M is firstly provided, and then that for
an odd M . Their minimality and the no-DC-leakage condition are also shown.

4.3.1 For EvenM

To construct a lattice structure of MD-LPPUFBs, we consider formulating the
order-increasing process of the polyphase matrix E(z), while keeping both of the
LP and PU properties. This approach is motivated from the process for that of
1-D LPPUFBs (Chapter 2).

Let Em(z) be a polyphase matrix, whose d-th dimension order is m. We
consider increasing the d-th dimension order m to m+ 1 as follows:

Em+1(z) = R
fdg
m+1Q

fdg(z)Em(z); (4.31)

where

Rfdg
n =

 
W

fdg
n O

O U
fdg
n

!
; (4.32)

Qfdg(z) = BM�
fdg(z)BM : (4.33)

W
fdg
n and Ufdg

n denote M=2�M=2 orthonormal matrices, and in addition,

�fdg(z) =

 
IM

2
O

O z�1
fdg

IM
2

!
: (4.34)

Although z�1
fdg

can simply be represented as z�1d , we still use the vector notation
for the consistent expression in multi-dimensions.

It can easily be verified that the PU property of Em(z) as in Eq. (4.25) results
in that of Em+1(z), since Rfdg

n and Qfdg(z) are PU. In addition, the LP property
of Em(z) as in Eq. (4.26) provides that of Em+1(z). Let us verify this fact.

Equation (4.31) can be rewritten as follows:

Em(z) = Qfdg(z�I)RfdgT
m+1Em+1(z): (4.35)

By substituting the above equation into the LP condition of Em(z), that is,

Em(z) = z�2c�mDMEm(z
�I)JM ; (4.36)
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we have

Qfdg(z�I)RfdgT
m+1Em+1(z) = z�2c�mDMQ

fdg(z)RfdgT
m+1Em+1(z

�I)JM ; (4.37)

where c�m is the center of N (�m), and �m is an extension matrix whose d-th
diagonal element is m + 1, which is the d-th dimension order [2c�m ]d = m plus
one.

From the fact that

R
fdg
m+1Q

fdg(z)DMQ
fdg(z)RfdgT

m+1 = z�1
fdg

DM ; (4.38)

Eq. (4.37) is reduced to

Em+1(z) = z�2c�m+1DMEm+1(z
�I)JM ; (4.39)

where 2c�m+1 = 2c�m+ 1fdg, namely, the d-th dimension order [2c�m+1
]d equals

m+ 1.
The last result implies that Em+1(z) sufficiently satisfies the LP condition as

in Eq. (4.26), and the order of Em+1(z), e.g. �nm+1 = 2c�m+1, has one more d-th
dimension order than that of Em(z), e.g. �nm = 2c�m, and the same order as each
other for the other dimensions.

Therefore, by repeating the order-increasing process according to Eq. (4.31),
we can extend the region of support of all filters, while keeping the LP and PU
properties. This process is applicable to any dimension. As a result, it can
be verified that the following product form generates a lattice structure of a D-
dimensional LPPUFB for even M :

E(z) =

8><
>:

D�1Y
d=0

NdY
n=1
Nd 6=0

Rfdg
n Qfdg(z)

9>=
>;Rf;g

0 E0; (4.40)

E0 =

�
�S O

O �A

�
BMTM ; (4.41)

where �S and �A are M=2�M=2 orthonormal matrices, which are fixed during
the design phase and contribute only to the starting guess. The superscript ‘f;g’
on R0 has no special meaning except for providing a consistent expression with
the definition of Rfdg

n . The matrix E0 is also PU and LP. In the case of D =
1, Eq. (4.40) is reduced to the factorization of an even number of channel 1-D
LPPUFBs whose filters all have a multiple of the number of channelsM discussed
in Section 2.2.1. Figure 4.4 shows an example of the proposed lattice structure,
whereM = ( 2 1

2 �1 ),� = ( 2 0
0 3 ) and �n = ( 12 ). Note that the relation as in Eq. (4.23)

is used.
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Figure 4.4: An example of proposed lattice structure of MD-LPPUFBs.
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By controlling the matrices Wfdg
n and Ufdg

n , we can design MD-LPPUFBs
with the guarantee of the PU and LP properties. Since an N � N orthonormal
matrix can be characterized by a combination ofN(N�1)=2 Givens rotations with
N sign parameters [1–3], designing such systems is made possible by means of
an unconstrained nonlinear optimization process to minimize (or maximize) some
object function by predetermining the sign parameters. Some design examples of
the proposed structure will be given in Section 4.4.

4.3.2 For OddM

For odd M , a necessary condition for the components in the extension matrix �
has to be shown firstly. The condition can be regarded as an extension of Collo-
rary 1 shown in the article [10] and Theorem 2 shown in the article [15] to the MD
case.

Theorem 4.7. Consider matrix-M LP PR filter banks, whose filters all have the
extended region of supportN (M�), where� = diag(N0+1; N1+1; � � � ; ND�1+
1), and Nd � 1. If M = J(M) is odd, all of Nd for d 2 f0; 1; � � � ; D � 1g are
even.

Proof. Taking the determinant of both sides of Eq. (4.26), we have

(z�2c�)Mdet(DME(z
�I)JM) = det(E(z)): (4.42)

Note that this equation has to be satisfied with any value of z.
Let us define �1fdg = 1

�fdg � 1fdg, where d 2 f0; 1; � � � ; D � 1g and �fdg is the
complement set of fdg. For example, when D = 4, �1f1g = (1; �1; 1; 1)T .

For odd M , by substituting z = �1fdg into Eq. (4.42), we obtain

(�1)�NdMdet(DM)(�1)M�1
2 = 1; (4.43)

where we use the multiplicative property of determinants and the facts that 2c� =
(N0; N1; � � � ; ND�1)T , (�1fdg)�I = �1fdg, E(z) is invertible, and

det(JM) = (�1)M(M�1)

2 = (�1)M�1
2 (4.44)

for odd M [15].
When (M � 1)=2 is even, det(DM) = 1 and (�1)M�1

2 = 1, otherwise,
det(DM) = �1 and (�1)M�1

2 = �1. Therefore, (�1)�NdM has to be 1. In
other words, since M is odd, Nd has to be even for any d.

When the number of channelsM is odd, it can be verified that the product form
in Eq. (4.45) generates a lattice structure of MD-LPPUFBs. Now, we redefine
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�S and �A in Eq. (4.41) as dM=2e � dM=2e and bM=2c � bM=2c orthonormal
matrices, respectively, so that the expression of Eq. (4.41) can be used in common.

E(z) =

8><
>:

D�1Y
d=0

LdY
`=1
Ld 6=0

R
fdg
E` Q

fdg
E (z)R

fdg
O` Q

fdg
O (z)

9>=
>;Rf;g

E0 E0; (4.45)

where Ld = Nd=2, which is guaranteed to be an integer since Nd is even. The
matrices Rfdg

E` , Rfdg
O` , Qfdg

E (z), and Qfdg
O (z) are as follows:

R
fdg
E` =

 
W

fdg
E` O

O U
fdg
E`

!
; (4.46)

R
fdg
O` =

0
@W

fdg
O` o O

oT 1 oT

O o U
fdg
O`

1
A ; (4.47)

Q
fdg
E (z) = BM�

fdg
E (z)BM ; (4.48)

Q
fdg
O (z) = BM�

fdg
O (z)BM ; (4.49)

where Wfdg
E` is an dM=2e � dM=2e orthonormal matrix, and Wfdg

O` ; U
fdg
E` , and

U
fdg
O` are bM=2c � bM=2c orthonormal matrices. In addition,

�
fdg
E (z) =

 
IdM

2
e O

O z�1
fdg

IbM
2
c

!
; (4.50)

�
fdg
O (z) =

 
IbM

2
c O

O z�1
fdg

IdM
2
e

!
: (4.51)

By controlling the matricesWfdg
E` ,Wfdg

O` , Ufdg
E` , andUfdg

O` , we can design MD-
LPPUFBs with the guarantee of the PU and LP properties. Since these matrices
are orthonormal matrices and can be characterized by a combination of Givens ro-
tations [1–3], using an unconstrained nonlinear optimization process for designing
such systems is possible. In the case of D = 1, Eq. (4.45) is reduced to the fac-
torization of an odd number of channel 1-D LPPUFBs discussed in Section 2.2.2.

Equation (4.45) is obtained in a similar way to the approach that was done for
even M , since the following order-increasing process holds both of the PU and
LP properties.

E2(`+1)(z) = R
fdg
E;`+1Q

fdg
E (z)R

fdg
O;`+1Q

fdg
O (z)E2`(z); (4.52)
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where Em(z) denotes a polyphase matrix of LPPUFBs, whose d-th dimension
order is m. When E2`(z) is PU, the PU property of E2(`+1)(z) is obvious. Thus,
let us verify only the LP condition.

Equation (4.52) gives the following relation:

E2`(z) = Q
fdg
O (z�I)RfdgT

O;`+1Q
fdg
E (z�I)RfdgT

E;`+1E2(`+1)(z): (4.53)

Substituting this into the LP condition of E2`(z), that is,

E2`(z) = z�2c�2`DME2`(z
�I)JM ; (4.54)

we have

Q
fdg
O (z�I)RfdgT

O;`+1Q
fdg
E (z�I)RfdgT

E;`+1E2(`+1)(z)

= z�2c�2`DMQ
fdg
O (z)R

fdgT
O;`+1Q

fdg
E (z)R

fdgT
E;`+1E2(`+1)(z

�I)JM ;
(4.55)

where c�m is the center of N (�m), and �m is an extension matrix whose d-th
diagonal element is m + 1.

From the facts that

R
fdg
OmQ

fdg
O (z)DMQ

fdg
O (z)R

fdgT
Om = z�1

fdg

�fdg(z)DM ; (4.56)

R
fdg
EmQ

fdg
E (z)�fdg(z)DMQ

fdg
E (z)R

fdgT
Em = z�1

fdg

DM ; (4.57)

where

�fdg(z) =

0
B@
IbM

2
c o O

oT z�1
fdg

oT

O o IbM
2
c

1
CA ; (4.58)

Eq. (4.55) can be reduced to

E2(`+1)(z) = z
�2c�2(`+1)DME2(`+1)(z

�I)JM ; (4.59)

where 2c�2(`+1) = 2c�2` + 21fdg, namely, the d-th dimension order [2c�2(`+1)]d
equals 2(` + 1). As a result, the d-th dimension order is increased from 2` to
2(`+ 1), holding the LP property.

4.3.3 Minimality

A structure is said to be minimal if it uses the minimum number of delay elements
for its implementation [1]. For a 1-D causal PU system E(z), it is known that
deg (det (E(z))) = deg (E(z)), where deg(H(z)) denotes the degree of H(z),
that is, the minimum number of delay elements required to implement H(z).
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Now, let us investigate the degree of the proposed structure. Note that the
degree in terms of the d-th dimension delay element z�1d can not be increased by
choosing any value of delay elements of the other dimensions. Therefore, the
following inequality holds.

degfdg(E(z)) � degfdg(E(zfdg)); d 2 f0; 1; � � � ; D � 1g; (4.60)

where degfdg(E(z)) denotes the degree in terms of z�1d , and zfdg is a D�1 vector
whose elements are all ‘1’ except for the d-th variable element zd, that is, zfdg =
zd1

fdg + 1f �dg. For example, zf1g = (1; z1; 1)
T in three dimension.

It can be verified that the proposed structure has

degfdg(det(E(zfdg))) =
NdM

2
; d 2 f0; 1; � � � ; D � 1g: (4.61)

This implies that degfdg(E(zfdg)) = NdM=2 for d 2 f0; 1; � � � ; D � 1g, since
E(zfdg) can be regarded as a 1-D causal PU system E(zd). Consequently, we
have

degfdg(E(z)) � NdM

2
; d 2 f0; 1; � � � ; D � 1g: (4.62)

The last inequality shows that the structure is minimal, since it uses NdM=2 delay
elements for each dimension for its implementation. (Note that in the structure
shown in Fig. 4.4, the down-samplers can be moved to the left side of the matrix
E0 by using the noble identity [1], so that it is minimally implemented.)

4.3.4 No DC leakage

When applied to subband image coding, filter banks should have band pass and
high pass filters that have no DC leakage [2]. This is because the DC leakage
causes undesirable distortion in the reconstructed images when the subband sig-
nals are severely quantized.

The no-DC-leakage condition in the MD analysis bank is expressed as

h(1) = E(1)dM(1) =
�p

M 0 0 � � � 0
�T
; (4.63)

where dM(1) is the M � 1 vector whose elements are all ‘1’.
Suppose that E0dM(1) = (

p
M; 0; 0; � � � ; 0)T . In the proposed structure,

the above condition can be reduced to2
64D�1Y
d=0

NdY
n=1
Nd 6=0

Wfdg
n

3
75Wf;g

0 =

�
1 oT

o V

�
(4.64)
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for even M , or2
64D�1Y
d=0

LdY
`=1
Ld 6=0

�
W

fdg
E`

�
W

fdg
O` o

oT 1

��375Wf;g
E0 =

�
1 oT

o V

�
(4.65)

for odd M , where V is a (dM=2e � 1)� (dM=2e � 1) orthonormal matrix. The
above condition is easily derived from the facts that Qfdg(1) = I, Qfdg

E (1) = I,
and Qfdg

O (1) = I.
For evenM , a design made by controlling the matricesRfdg

n in Eq. (4.32) sub-
ject to Eq. (4.64) leads to MD-LPPUFBs which have no DC leakage. The design
can be achieved by restricting the matrixWf;g

0 to a matrix whose first column vec-

tor is the transposition of the first row vector of the product

�QD�1
d=0

QNd
n=1
Nd 6=0

W
fdg
n

�
.

Note that the inverse of the product is a candidate of Wf;g
0 yielding no DC leak-

age. For odd M , a design made by controlling the matrices Rfdg
E` and Rfdg

O` in
Eqs. (4.46) and (4.47) subject to Eq. (4.65) leads to MD-LPPUFBs without DC
leakage. Similarly, this design can be achieved by properly choosing the matrix
W

f;g
E0 .
A design example with no DC leakage will be shown in the next section.

4.4 Design Examples

In order to verify the significance of the proposed structure, let me show some
design examples for both of the rectangular and non-rectangular decimation cases.
These examples are designed by taking the Givens rotation angles, which appear
in the factorization of the orthonormal matrices controlled during optimization, as
the design parameters, and by using the routine ‘fminu’ provided by the MATLAB
optimization toolbox [32]. The sign parameters in the factorization of orthonormal
matrices are heuristically determined. Although the examples shown here are in
2D, the proposed structure is applicable to any dimension.

4.4.1 Rectangular Decimation

For the design examples shown here, the object function of the optimization is
chosen as the maximum coding gain GSBC [1, 4] for the isotropic autocorrelation
function (acf) model (Appendix B), a representative non-separable one, with the
correlation coefficient � = 0:95 [36]. The first matrix E0 is chosen to be the type-
II 2-D DCT for even M and the type-I 2-D DCT for odd M [30], which can be
rewritten as the form in Eq. (4.41).
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(a) Basis images of 16 analysis filters
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(b) Amplitude responses of the 4 analysis filters whose subband
signals have the 4 highest variances.

Figure 4.5: A design example of MD-LPPUFBs with rectangular decimation Each filter
has 12 � 12 taps. GSBC = 11:55 dB for the isotropic acf model with � =

0:95. !d denotes the d-th dimension normalized angular frequency [rad].
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Table 4.1: Coding gain GSBC of MD-LPPUFBs with rectangular decimation for the
isotropic acf model with � = 0:95. M and �n denote the decimation ma-
trix and the order of polyphase matrix, respectively. M denotes the number of
channels.

M M �n
T

GSBC [dB]
SEPARABLE PROPOSED

�
2 0

0 2

�
4

(0; 0) 8.12 8.12
(1; 1) 8.12 8.16
(2; 2) 8.12 8.88�

3 0

0 3

�
9

(0; 0) 9.98 9.99
(1; 1) - -
(2; 2) 9.98 10.77�

4 0

0 4

�
16

(0; 0) 10.75 10.78
(1; 1) 11.20 11.28
(2; 2) 11.42 11.55

Table 4.1 shows the resulting GSBC’s of the proposed lattice structure. Those
of separable structures with 1-D LPPUFBs proposed in Chapter 2 are also shown.
As an example, basis images and amplitude responses of analysis filters Hk(z)
generated with the proposed structure are given in Fig. 4.5, whereM = ( 4 0

0 4 ) and
� = ( 3 0

0 3 ). The number of channels M is 16 and the number of taps is 12 � 12.
In addition, the order of E(z) is �n = (N0; N1)

T = (2; 2)T .
From Table 4.1, we notice that the GSBC of the proposed structure is higher

than that of the separable structures. In particular, when M = ( 2 0
0 2 ), the GSBC

of the proposed structure becomes higher as the order increases, whereas that of
the two-channel-based separable system does not. This is because the separable
system can not have any overlapping solution, while the proposed structure can.

4.4.2 Non-rectangular Decimation

Now, we have a design example of a non-rectangular decimation case, with which
a separable system can not be constructed. The object function here is also chosen
as the coding gain GSBC for the isotropic acf model with � = 0:95.

As an example, we choose the decimation matrix M and the extension ma-
trix � as M = ( 2 1

2 �1 ) and � = ( 2 0
0 3 ), where the number of channels M is 4

and the number of taps of each filter is 24. In addition, the order of E(z) is
�n = (N0; N1)

T = (1; 2)T . The structure shown in Fig. 4.4 corresponds to this
example.

The basis images and the amplitude responses of the resulting analysis filters



4.4. DESIGN EXAMPLES 83

(a) Basis images of 4 analysis filters
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(b) Amplitude responses of 4 analysis filters

Figure 4.6: A design example of MD-LPPUFBs with non-rectangular decimation, which
is designed under the no-DC-leakage condition. Each filter has 24 taps.
GSBC = 8:46 dB for the isotropic acf model with � = 0:95. !d denotes
the d-th dimension normalized angular frequency [rad].
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Table 4.2: Optimal matrices designed for maximizing the coding gain of the structure
shown in Fig. 4.4 for the isotropic acf model with � = 0:95.

d n W
fdg
n U

fdg
n

; 0

0
@�0:4116 �0:9114

0:9114 �0:4116

1
A

0
@0:9999 0:0101

0:0101 �0:9999

1
A

0 1

0
@�0:1771 0:9842

�0:9842 �0:1771

1
A

0
@ 0:1869 0:9824

�0:9824 0:1869

1
A

1 1

0
@0:9990 �0:0456

0:0456 0:9990

1
A

0
@�0:9994 �0:0355

�0:0355 0:9994

1
A

1 2

0
@ 0:9577 0:2877

�0:2877 0:9577

1
A

0
@ 0:9313 �0:3642

�0:3642 �0:9313

1
A

Hk(z) are shown in Fig. 4.6, where the matrices �S and �A in the first matrix E0

are fixed as

�S = �A =
1p
2

�
1 1
1 �1

�
: (4.66)

This choice guarantees thatE0dM(1) = (
p
M 0 0 � � � 0)T . In addition, the matrix

W
f;g
0 is chosen as the inverse of the product Wf1g

2 W
f1g
1 W

f0g
1 , so that Eq. (4.64)

holds, that is, no DC leakage is caused. In Table 4.2, we give the resulting optimal
matrices Wfdg

n and Ufdg
n .

In this example, the coding gain results in aGSBC = 8:46 dB, whereasGSBC =
8:47 dB when optimizing the full structure without considering the no-DC-leakage
condition. These results are comparable.

4.5 Summary

A lattice structure of MD-LPPUFBs was proposed. All filters in the system have
the extended region of supportN (M�), whereM is the decimation matrix and�
is a positive integer diagonal matrix (or extension matrix) under the condition that
N (M) is reflection invariant, Since the system structurally restricts both the PU
and LP properties, an unconstrained optimization process can be used to design
it. The structure is developed for both an even and odd number of channels, and
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includes the conventional 1-D system as a special case. It was also shown to be
minimal, and the no-DC-leakage condition was presented. By showing some de-
sign examples, the significance of the proposed structure for both the rectangular
and non-rectangular decimation cases were verified. For the rectangular decima-
tion case, it was shown that the structure achieves a higher coding gain for the
isotropic acf model than that for the separable one. In particular, the proposed
structure overcomes the problem of separable MD-LPPUFBs in that they cannot
be constructed with any overlapping filters when they are based on two-channel
1-D systems. Furthermore, it was demonstrated that the proposed lattice structure
can generate a non-rectangular decimation LPPUFB with no DC leakage.
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Chapter 5

2-D Axial-Symmetric Filter Banks

As was mentioned, LP filter banks are of interest for image processing. One of
the reasons was stated in Chapter 2 that filter banks with this property can handle
finite-duration signals by means of the symmetric extension method to avoid the
size-increasing problem. In fact, this statement is true only for 1-D or separable
systems, and the symmetric extension method, in general, can not be applied to
MD non-separable systems even if it is LP. To use the method, filters have to be
axial-symmetric (AS) for each dimension. Recently, Stanhil and Zeevi stated this
fact, where the word “four-fold symmetry” is used instead of “axial-symmetry”
in the article [29]. From such a background, this chapter will deal with axial-
symmetric paraunitary filter banks (ASPUFBs).

Firstly, a 2-D binary-valued (BV) lapped transform (LT) is proposed. LT, here,
means that the process with a PU filter bank with filters whose region of support is
wider than that ofN (M), whereM is the decimation matrix for 2-D signals. For
1-D signals, it denotes process with a PU filter banks whose filters are longer than
M , where M is the decimation factor. The proposed LT has basis images which
take only BV elements and satisfies the axial-symmetric (AS) property. In one di-
mension, there is no 2-point LT with the symmetric basis vectors, and the property
is achieved only with the non-overlapping basis which the Hadamard transform
(HT) has. Hence, in two dimension, there is no 2 � 2-point separable ASLT, and
only 2-D HT can be the 2� 2-point separable AS orthonormal transform. By tak-
ing non-separable BV basis images, this chapter shows that a 2 � 2-point ASLT
can be obtained. Toward to the completion of this thesis, Stanhil et al. showed
that 2� 2-point ASLT can take only BV coefficients [29]. Since the proposed LT
is similar to HT, it is referred to as the lapped Hadamard transform (LHT). LHT
of larger size is shown to be provided with a tree structure.

Stanhil et al. also proposed a design method of ASPUFBs, where filters can
take continuous-valued coefficients [29]. However, it requires us to solve a matrix
equation under some conditions. Thus, in this thesis, let us consider construct-

87
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ing a lattice structure of 2-D ASPUFBs, which makes it possible to design such
filter banks in a systematic manner. ASPUFBs consist of non-separable axial-
symmetric (AS) filters, and can be regarded as a subclass of non-separable linear-
phase paraunitary (PU) ones. The proposed 2-D LHT can also be represented by
this structure as a special case. Since the proposed system structurally restricts
both the PU and AS properties, it can be designed by using an unconstrained opti-
mization process. A design example will be given to show the significance of the
lattice structure.

Throughout this chapter, the following notation is used.

Îf0g, Îf1g : the 2� 2 matrices defined respectively by

Îf0g = diag(1;�1) (5.1)

Îf1g = diag(�1; 1) (5.2)

z : a 2 � 1 vector which consists of variables in a 2-D z-domain, that is, z =
(z0 z1)

T .

zM : a 2� 1 vector whose d-th element is defined by

�
zM
�
d
= z

M0;d

0 z
M1;d

1 (5.3)

where M is a 2 � 2 nonsingular integer matrix, and Mk;` denotes the k-th
row and `-th column element of M.

z�I : the 2� 1 vector defined by z�I = (z�10 z�11 )T .

zm : the product defined by zm = zm0

0 zm1

1 , wherem is a 2�1 integer vector, and
mk denotes the k-th element of m.

N : the set of 2� 1 integer vectors.

5.1 Review of 2-D Transforms

As a preliminary, let us review 2-D lapped transforms (LTs). Note that 2-D
LTs can equivalently represented as a 2-D maximally decimated paraunitary filter
bank.
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Support region

of a basis image

Support region of a target block

Figure 5.1: Support region of a basis image in 2-D LT.

5.1.1 Lapped Transforms

Let M be a 2� 2 non-singular integer matrix and �k(n) for k = 0; 1; � � � ;M � 1
be 2-D functions which satisfy the conditionX

n2N
�k(n)�

�
k0(n�Mm) = Æ(k � k0)Æ(m);

k = 0; 1; � � � ;M � 1; m 2 N (5.4)

for the factor-M, where M = jdet(M)j and Æ(�) denotes the delta function. Equa-
tion (5.4) is the extension of the orthonormal condition of 1-D orthonormal trans-
forms to 2-D ones and corresponds to the paraunitary condition of filter banks
with the factor M [1]. The functions �k(n) are called basis images. In addition,
let f�k;mg be the set of the array �k;m(n) = �k(n �Mm), which is referred to
as basis.

By using the basis f�k;mg, a 2-D orthonormal transform with the factor M of
an input array x(n) is defined by

yk(m) =
X
n2N

x(n)�k;m(n); (5.5)

for k = 0; 1; � � � ;M � 1, where yk(m) denotes the k-th transform coefficient
array. Then, we have the inverse orthonormal transforms as follows:

x(n) =
M�1X
k=0

X
m2N

yk(m)��k;m(n): (5.6)

If the elements in the basis images �k(n) are real, Eq. (5.4) is reduced toX
n2N

�k(n)�k0(n�Mm) = Æ(k � k0)Æ(m): (5.7)
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In this chapter, for the sake of convenience, the transform as in Eq. (5.5) is re-
ferred to as a matrix-M transform. In general, the support region of basis images
overlaps with that of blocks adjacent to the target one as shown in Fig. 5.1. Note
that the 2-D HT consists of non-overlapping basis images, and that orthonormal
transforms are not LTs with such basis images.

It can be verified that analysis and synthesis process in a paraunitary system is
identical to the LTs in Eqs. (5.5) and (5.6), respectively, under the condition that

hk(n) = �k(�n); (5.8)

fk(n) = ��k(n); (5.9)

where hk(n) and fk(n) denote impulse responses of the analysis and synthesis
filters, respectively.

5.1.2 Axial-Symmetric Property

For 2-D LTs, the AS property is of interest because it is sufficient to the point-
wise symmetry of basis, that is, the linear-phase property of filter banks, and the
symmetric extension method can directly be used [5–9].

The AS property of a basis image �k(n) is expressed as follows:

�k(n) = �k

�
n0
n1

�
= ��k

�
2c0 � n0

n1

�
; (5.10)

�k(n) = �k

�
n0
n1

�
= ��k

�
n0

2c1 � n1

�
; (5.11)

where ck is an integer multiple of 1=2 and denotes the center of symmetry in the
k-th dimension. Furthermore, the vector c = (c0 c1)

T denotes the center of the
point-wise symmetry, where c 2 1

2
N .

5.1.3 Hadamard Transform

Let us here review the 2-D HT and summarize its properties. Firstly, let us define
a diagonal matrix Mp by

Mp =

�
2p 0
0 2p

�
: (5.12)

In the following, the matrix-Mp transform means 2p � 2p-point one.



5.1. REVIEW OF 2-D TRANSFORMS 91

x(n)

y0(m)
y1(m)

yM�1(m)

Level 1 Level 2 Level p

f�
(1)
Hk;mg

f�
(1)
Hk;mg

f�
(1)
Hk;mg

f�
(1)
Hk;mg

f�
(1)
Hk;mg

f�
(1)
Hk;mg

f�
(1)
Hk;mg

f�
(1)
Hk;mg

Figure 5.2: The tree structure of the 2p � 2p 2-D HT

The 2� 2 Hadamard Transform

Let �(p)Hk(n) be the k-th basis image of the matrix-Mp HT. For the factorM =M1,
the basis images of HT are defined by

�
(1)

H0 =
1

2

�
1 1
1 1

�
; (5.13a)

�
(1)

H1 =
1

2

�
1 �1
1 �1

�
; (5.13b)

�
(1)

H2 =
1

2

�
1 1
�1 �1

�
; (5.13c)

�
(1)

H3 =
1

2

�
1 �1
�1 1

�
; (5.13d)

where �(1)

Hk is the matrix representation of the basis image �(1)Hk(n), that is,

[�
(1)

Hk]n0;n1 = �
(1)

Hk(n) = �
(1)

Hk(
n0
n1

); n0; n1 = 0; 1; (5.14)

where it is assumed that �(1)Hk (
n0
n1 ) = 0 for n0 6= 0; 1 or n1 6= 0; 1.

Tree Structure of the 2p � 2p HT

The basis images of the matrix-Mp HT can be simply obtained as

�
(p)

Hk = �
(1)

H((k))4

�(p�1)

Hb k
4
c ; (5.15)
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for k = 0; 1; � � � ;M � 1, where ((x))N and bxc denote the integer of x modulo N
and the integer value of x, respectively, and M = 2p+1. The operator ‘
’ denotes
the Kronecker product.

Equation (5.15) implies that the matrix-Mp HT can be implemented with the
p-level tree structure of the matrix-M1 HT as shown in Fig. 5.2, where the box
including f�(1)Hk;mg denotes the matrix-M1 HT. On the other hand, the inverse
transform is implemented by reversing the direction of each arrow in Fig. 5.2. For
the sake of simplification, no attention is taken to the ordering of the basis images,
such as the sequency [37].

The basis images of HT does not overlap with themselves by shifting with the
factor Mp. Hence, we haveX

m2N
�
(p)
Hk(n�Mpm) = �

(p)
Hk(n); n 2 N (Mp);

(5.16)

where N (M) denotes the set of the integer vectors in the fundamental paral-
lelepiped generated byM [1]. In this case, the condition as in Eq. (5.4) is reduced
to

h�(p)
Hk;�

(p)

Hk0i =
X
n2N

�
(p)
Hk(n)�

(p)�
Hk0 (n)

= Æ(k � k0); (5.17)

where the notation hA;Bi expresses the sum of the element-by-element products
of two matricesA andB. It can be easily verified that the basis of 2-D HT satisfies
the orthonormal property in Eq. (5.17) and are AS.

Now, the following show the properties of the 2-D HT .

� The basis f�(p)Hk;mg is orthonormal. In addition, the basis images �(p)Hk(n) are
AS, take only BV elements, and have no DC gain for k 6= 0, that is, there is
no DC leakage [2].

� The basis images �(p)Hk(n) are separable and non-overlapping.

5.2 Lapped Hadamard Transform

In the following, a 2-D binary-valued axial-symmetric lapped transform (BV-
ASLT), which is similar to the 2-D HT, is proposed. The main difference of
the proposed BV-ASLT from HT is that it consists of a non-separable overlapping
basis. In this chapter, the proposed BV-ASLT is referred as the lapped Hadamard
transform (LHT).
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5.2.1 The 2� 2 Lapped Hadamard Transform

Let � be a real matrix of size 2� 2 which satisfies the following condition:

h�;Ji�Jji =
X
n2N

s00(n)sij(n)

=
1

4
Æ(i)Æ(j); (5.18)

for i; j = 0; 1, where J0 = I, J1 = J and sij(n) = sij (
cn0
n1 ) = [Ji�Jj]n0;n1

for n0; n1 = 0; 1, where we assume that sij(n) = sij (
cn0
n1 ) = 0 for n0 6= 0; 1 or

n1 6= 0; 1.
By using the matrix �, we can obtain the following AS basis images �(1)Lk (n)

for the factor M1:

�
(1)

L0 =

�
� �J

J� J�J

�
; (5.19a)

�
(1)

L1 =

�
� ��J
J� �J�J

�
; (5.19b)

�
(1)

L2 =

�
� �J

�J� �J�J
�
; (5.19c)

�
(1)

L3 =

�
� ��J
�J� J�J

�
; (5.19d)

where [�
(1)

Lk ]n0;n1 = �
(1)

Lk (n) = �
(1)

Lk (
n0
n1 ) for n0; n1 = 0; 1; 2; 3, where we assume

that �(1)Lk (n) = �
(1)

Lk (
n0
n1 ) = 0 for n0 6= 0; 1; 2; 3 or n1 6= 0; 1; 2; 3. In the following,

the fact that these basis images construct orthonormal basis is verified.
From Eq. (5.18), since

h�(1)

Lk ;�
(1)

Lk0i =
X
n2N

�
(1)

Lk (n)�
(1)

Lk0(n)

= Æ(k � k0); (5.20)

the orthonormality between the basis images is guaranteed. In addition, since

h�;�Ji � hJ�;J�Ji = 0; (5.21)

h�;J�i � h�J;J�Ji = 0; (5.22)

h�;J�Ji = h�J;J�i = 0; (5.23)

the orthogonality with respect to the shift by the matrix M1 is guaranteed as

hS0;m1
�
(1)

LkS
T
0;m0

;S1;m1
�
(1)

Lk0S
T
1;m0
i =

X
n2N

�
(1)

Lk (n)�
(1)

Lk0(n�M1m) = Æ(m);

m =

�
m0

m1

�
2
��

0
0

�
;

�
1
0

�
;

�
0
1

�
;

�
1
1

��
(5.24)
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where S01 = (I2 O), S11 = (O I2) and Si0 = I4 for i = 0; 1. Hence, the basis
f�(1)Lk;mg satisfies the orthonormality as in Eq. (5.4).

Here, we have one choice of the matrix � such as

� =
1

4

� �1 1
1 1

�
: (5.25)

From the definition, the above choice generates the following LT basis images:

�
(1)

L0 =
1

4

0
BB@
�1 1 1 �1
1 1 1 1
1 1 1 1
�1 1 1 �1

1
CCA ; (5.26a)

�
(1)

L1 =
1

4

0
BB@
�1 1 �1 1
1 1 �1 �1
1 1 �1 �1
�1 1 �1 1

1
CCA ; (5.26b)

�
(1)

L2 =
1

4

0
BB@
�1 1 1 �1
1 1 1 1
�1 �1 �1 �1
1 �1 �1 1

1
CCA ; (5.26c)

�
(1)

L3 =
1

4

0
BB@
�1 1 �1 1
1 1 �1 �1
�1 �1 1 1
1 �1 1 �1

1
CCA : (5.26d)

Note that the transform with the above basis images consist of only BV ele-
ments �1 with the scale factor 1=4, which implies that the transform requires no
multiplication. Figure 5.3 gives the basis images, and also the amplitude responses
by regarding them as analysis filters in filter banks.

The matrix � is not unique, and therefore, we refer to the transform with this
basis as the type-I LHT in this chapter. In the following, we give another choice
of the matrix �.

� =
1

4

� �1 �1
�1 1

�
: (5.27)

Figure 5.4 shows the corresponding basis images and the amplitude responses. In
this chapter, we refer the transform as the type-II LHT.

Assume that the matrix � consists of non-zero elements. In fact, on this as-
sumption, it can be shown that � must be BV with the absolute value 1=4. In
addition, if and only if the number of negative elements in� is odd, that is one or
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(a) Basis images
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Figure 5.3: The type-I lapped Hadamard transform.
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(a) Basis images
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Figure 5.4: The type-II lapped Hadamard transform.
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three, Eq. (5.18) is satisfied. This implies that there are 8 choices of the matrix �
Note that, if the elements are not restricted to be non-zero, we have more choices,
such as the HT, which are trivial. In the following section, all possible choices of
the matrix � which satisfies Eq. (5.18) are shown.

5.2.2 Choices of �

Let �ij be the i; j-th element of the matrix �. Then, from Eq. (5.18), �ij must
satisfy the following equations:

�200 + �201 + �210 + �201 =
1

4
(5.28a)

�00�01 + �10�11 = 0 (5.28b)

�00�10 + �01�11 = 0 (5.28c)

�00�11 + �01�10 = 0 (5.28d)

Suppose that each element �ij is non-zero. In this case, Eqs. (5.28b) (5.28c)
and (5.28d) lead the following equation:

�00 = ��10�11
�01

= ��01�11
�10

= ��01�10
�11

: (5.29)

The above equation implies that �210�
2
11 = �201�

2
11 = �201�

2
10, that is, �201 = �210 = �211.

By expressing another element as in Eq. (5.29), we have the relation

�200 = �201 = �210 = �211: (5.30)

Namely, if � consists of non-zero elements, then the absolute value of each el-
ements must be the same as each other. In other words, � must be BV. From
Eq. (5.28a), the absolute value results in 1

4
.

Next, let us consider the number of negative elements in the matrix�. Clearly,
Eqs. (5.28b) (5.28c) and (5.28d) are satisfied, if and only if one term is positive
and the other is negative. It is obvious that the condition is achieved if and only if
the number of negative elements is one or three.

If � has zero-value elements, then the number of them must be three, other-
wise it conflicts Eqs. (5.28b)(5.28c) and (5.28d).

5.2.3 Tree structure of the 2p � 2p LHT

Let us define the basis images of the matrix-Mp 2-D LHT for p > 1 as

�
(p)

Lk = �
(1)

L((k))4

�(p�1)

Hb k
4
c ; (5.31)
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x(n)

y0(m)
y1(m)

yM�1(m)

Level 1 Level 2 Level p

f�
(1)
Hk;mg

f�
(1)
Hk;mg

f�
(1)
Hk;mg

f�
(1)
Hk;mg

f�
(1)
Hk;mg

f�
(1)
Lk;mg

f�
(1)
Lk;mg

f�
(1)
Lk;mg

Figure 5.5: The tree structure of the 2p � 2p LHT.

Figure 5.6: Basis images of the 23 � 23 type-I LHT.
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for k = 0; 1; � � � ;M � 1. This definition holds all of the orthonormality, AS, BV
and overlapping properties.

Equation (5.31) implies that the matrix-Mp 2-D LHT can be implemented with
the tree structure of the matrix-Mp�1 HT appended with the matrix-M1 LHT as
the leaves as shown in Fig. 5.5, where the hatched box including f�(1)Lk;mg denotes
the matrix-M1 LHT. The inverse transform is simply implemented by reversing
the direction of each arrow in the structure.

As an example, the basis images of the matrix-M3, that is, 8� 8-point type-I
LHT is given in Fig 5.6, where each basis image is of size 16�16, while the block
size is 8 � 8. In the same way, we can obtain the basis images of the matrix-Mp

LHT.
The following summarizes the properties of the 2-D LHT.

� The basis f�(p)Lk;mg is orthonormal. In addition, the basis images �(p)Lk (n) are
AS, take only BV elements, and have no DC gain for k 6= 0, that is, there is
no DC leakage [2].

� The basis images �(p)Lk (n) are non-separable, overlapping, and of size 2p�2p
for the factor Mp. The overlapping ratio is 50% for each dimension.

It is important to note again that there is no separable basis which holds the
overlapping and AS properties for the matrix-M1 transform. The proposed LHT,
however, achieves those properties by introducing non-separable BV basis.

5.3 Axial-symmetric Filter Banks

For a larger decimation factor than 2�2, there is potential that filters can take con-
tinuous valued coefficients. Next, let us consider constructing 2-D ASPUFBs, and
developing the lattice structure which makes it possible to design it in a systematic
manner.

Consider a parallel structure of filter banks shown in Fig. 4.3 (a), where Hk(z)
and Fk(z) are the k-th analysis and synthesis filter, respectively. Let H(z) be a
2-D filter whose d-th dimension order is Ld. If H(z) satisfies the condition that

H(z) = 
dz
�2cfdg

h Hk(z
�Îfdg); d 2 f0; 1g (5.32)

then the impulse response of H(z) has axial-symmetry, where 
d = �1, cf0gh =
1
2
(L0; 0)

T , cf1gh = 1
2
(0; L1)

T , z = (z0; z1)
T , z�Î

f0g

=
�
z�10 ; z1

�T
and z�Î

f1g

=�
z0; z

�1
1

�T
.
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All of analysis and synthesis filters in axial-symmetric filter banks satisfy the
condition in Eq. (5.32). In this section, 2-D AS filer banks of the following deci-
mation factor is dealt with:

M =

�
M0 0
0 M1

�
; (5.33)

whereM0 and M1 are even. In the followings,M denotes the number of channels,
where M = jdetMj = M0M1.

Let E(z) be a type-I polyphase matrix of an analysis bank and Nd be the d-th
dimension order of E(z) (see Chapter 3). If E(z) satisfies the condition that

E(z) = z�2c
fdg

� �fdgE(z�Î
fdg

)Pfdg; d 2 f0; 1g; (5.34)

then the analysis bank consists of only AS filters, where cf0g� = 1
2
(N0; 0)

T , cf1g� =
1
2
(0; N1)

T [29]. �fdg and Pfdg denote the M � M diagonal matrix with �1
elements and permutation matrix defined by

�fdg =

(
IM

2
�
�
�IM

2

�
d = 0

�M�
f0g d = 1

; (5.35)

Pfdg =
� LPM1�1

i=0 JM0
d = 0

JMP
f0g d = 1

; (5.36)

respectively, where � denotes the direct sum of matrices [38]. It can be easily
verified that the above diagonal and permutation matrices satisfy the condition
shown in [29]. Note that the polyphase matrix E(z) is defined as the transpose of
the one defined in the article.

The numbers of symmetric and anti-symmetric filters with respect to the axis-
wise symmetry should be the same as each other for each dimension, as well as
those with respect to the point-wise symmetry [10]. In Eq. (5.34), this requirement
is taken into account.

5.3.1 Proposed Lattice Structure

In addition to the AS property, let us consider imposing filter banks to be PU. The
condition for the PU property of E(z) is expressed by ~E(z)E(z) = IM . If the
analysis bank holds the PU property, the counterpart synthesis bank yielding per-
fect reconstruction is simply obtained [1]. Thus, only analysis bank is discussed
below.
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In order to construct a lattice structure of 2-D ASPUFBs, let us consider for-
mulating the order increasing process of the polyphase matrixE(z), while keeping
both of the PU and AS properties.

Let Em(z) be a polyphase matrix, whose d-th dimension order is m. Let us
consider increasing the d-th dimension order m to m + 1 as follows:

Em+1(z) = SfdgTRfdg
m+1Q

fdg(z)SfdgEm(z); (5.37)

where Rfdg
n , Qfdg(z) and Sfdg are the M �M paraunitary matrices defined by

Rfdg
n =

�
FT

M
2

� FT
M
2

� M 3X
i=0

U
fdg
n;i

!�
FM

2
� FM

2

�
(5.38)

Qfdg(z) = BM�
fdg(z)BM ; (5.39)

and

Sfdg =

(
IM

2
� JM

2
; d = 0

FT
M

�
FM

2
� FM

2

�
; d = 1

; (5.40)

where

�fdg(z) = IM
2
�
�
z�1

fdg

IM
2

�
= IM

2
�
�
z�1d IM

2

�
; (5.41)

FM = TMPM =

0
BBBBB@

1 0 0 0 � � � 0
0 0 1 0 � � � 0
...

...
...

...
. . .

...
0 0 0 1 � � � 0
0 1 0 0 � � � 0

1
CCCCCA (5.42)

The matrices Ufdg
n;i are arbitrary M=4�M=4 orthonormal matrices.

The PU property ofE(z) results in that ofEm+1(z), since all of Sfdg,Rfdg
n and

Qfdg(z) are PU. In addition, the AS property ofEm(z) as in Eq. (5.32) propagates
to Em+1(z). In the following, this fact is verified.

Let us consider increasing the d0-th dimension order from m to m + 1. Now,
Eq. (5.37) can be rewritten as follows:

Em(z) = Sfd
0gTQfd0g(z�Î

fd0g

)R
fd0gT
m+1S

fd0gEm+1(z); (5.43)
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By substituting the above equation into the AS condition of Em(z), we have

Em+1(z) = z�2c
fdg

�mV
fd0gfdg
m+1 (z)Em+1(z

�Îfdg)Pfdg; d 2 f0; 1g (5.44)

where cfdg�m
is a vector whose d0-th element is m=2, and

Vfd0gfdg
n (z) = Sfd

0gTRfd0g
n Qfd0g(z)Sfd

0g�fd
0gSfd

0gTQfd0g(zÎ
fd0g

Î
fdg

)Rfd0gT
n Sfd

0g: (5.45)

Let 1f0g = (1; 0)T and 1f1g = (0; 1)T . From the fact that

Vfd0gfdg
n (z) =

�
z�1

fdg

�fdg d = d0

�fdg d 6= d0
; (5.46)

Eq. (5.44) is reduced to

Em+1(z) =

(
z
�2cfdg

�m+1�fdgEm+1(z
�Îfdg)Pfdg; d=d0

z�2c
fdg

�m�fdgEm+1(z
�Îfdg)Pfdg; d 6=d0

d 2 f0; 1g (5.47)

where cfdg�m+1
is a vector whose d0-th element is (m+ 1)=2. The last result implies

that Em+1(z) sufficiently satisfies the AS condition, and the only d0-th dimension
order is increased.

Therefore, the following product form of the polyphase matrix provides us
an ASPUFB of order (N0; N1) which holds both of the PU and AS (Eq. (5.34))
properties.

E(z) =

8><
>:

1Y
d=0

NdY
n=1
Nd 6=0

SfdgTRfdg
n Qfdg(z)Sfdg

9>=
>;Rf;g

0 E0; (5.48)

where E0 is an arbitrary M �M orthonormal matrix which satisfies the AS con-
dition that E0 = �fdgE0P

fdg for d 2 f0; 1g. The polyphase matrix of the type-II
2-D DCT is a good candidate for the matrixE0. E0 can be fixed during the design
phase.

According to the product form in Eq. (5.48), we can obtain a lattice structure
of ASPUFBs as shown in Fig. 5.7. Let us here summarize the properties of the
proposed structure.

� By controlling the orthonormal matrices Ufdg
n;i , the lattice structure can be

characterized, and then an ASPUFB can be designed.

� The system is causal and minimal. The region of support of all filters results
in M0(N0 + 1)�M1(N1 + 1).

In order to control the orthonormal matrices Ufdg
n;i , we can use the Givens factor-

ization technique [1]. Since the AS and PU properties are guaranteed during the
design phase, ASPUFBs can be designed by means of an unconstrained non-linear
optimization process.
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5.3.2 Minimality of Lattice Structure

A structure is said to be minimal if it uses the minimum number of delay elements
for its implementation [1]. For a 1-D causal PU system E(z), it is known that
deg (det (E(z))) = deg (E(z)), where deg(H(z)) denotes the degree of H(z),
that is, the minimum number of delay elements required to implement H(z).

Now, let us investigate the degree of the proposed structure. Note that the
degree in terms of the 0-th (or 1-th) dimension delay element z�10 (or z�11 ) can
not be increased by choosing any value of delay elements of the other dimension.
Therefore, the following inequality holds.

degfdg (E(z)) � degfdg
�
E(zfdg)

�
;

d = 0; 1; (5.49)

where degfdg(E(z)) denotes the degree in terms of z�1d , zf0g = (z0 1)
T and zf1g =

(1 z1)
T .

From, Eq. (5.52), it can be verified that the proposed structure has

degfdg
�
det
�
E(zfdg)

��
=
NdM

2
; d = 0; 1: (5.50)

This equation implies that degfdg(E(zfdg)) = 2 for d = 0; 1, since E(zfdg) can be
regarded as a 1-D causal PU system E(zd). Consequently, we have

degfdg(E(z)) � NdM

2
; d = 0; 1: (5.51)

The last inequality guarantees that the structure is minimal, since it is implemented
with only NdM=2 delay elements for each dimension.

5.3.3 Lattice Structure of 2-D LHT

In this section, we show that the proposed 2-D LHT of the matrix-M1 can also be
represented by the proposed lattice structure as a special case. It is also addressed
that the transform can be efficiently implemented by the lattice structure.

Figure 5.8 shows the lattice structure of the matrix-M1 LHT, where 
n is a pa-
rameter of 1 or -1. The choices of 
n for all possible LHTs are given in Table 5.1.
Types III and IV are other newly introduced variations, and Types I’,II’,III’ and
IV’ are sign-reversed versions of the corresponding types, respectively. Note that
it is represented as a causal system, although the definition in Eqs. (5.19a) (5.19b)
(5.19c) and (5.19d) generate a non-causal one.

In the following, the polyphase representation of the structure for the delay
chain d(z) = (1 z�10 z�11 z�10 z�11 )T is provided [1].

E(z) = R
f1g
1 Qf1g(z)Sf1gSf0gTRf0g

1 Qf0g(z)Sf0gRf;g
0 E0; (5.52)
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Table 5.1: The choices of 
n parameters for all possible LHTs.
Type 
0 
1 
2 
3 Type 
0 
1 
2 
3

I 1 -1 -1 -1 I’ -1 1 1 1
II -1 -1 1 -1 II’ 1 1 -1 1
III 1 -1 1 1 III’ -1 1 -1 -1
IV 1 1 1 -1 IV’ -1 -1 -1 1

where

E0 =
1

2

0
BB@
1 1 1 1
1 1 �1 �1
1 �1 �1 1
1 �1 1 �1

1
CCA ; (5.53)

R
f;g
0 =

0
BB@

0 0 0 0
0 
1 0 0
0 0 
2 0
0 0 0 
3

1
CCA ; (5.54)

R
f0g
1 = R

f1g
1 = I4 (5.55)

In Eq. (5.52), the permutation matrix Sf1gT which appears as the final building
block according to Eq. (5.48) is omitted for the sake of simplification.

According to Eq. (5.5), the implementation of the matrix-M1 LHT requires
bit shift operation for scaling with 1/4 and 60 additions per block. On the other
hand, by using the lattice structure, the implementation complexity is reduced to
24 additions per block with scaling by 1=8. Obviously, the lattice structure is
directly applicable to the tree structure as shown in Fig. 5.5 so as to efficiently
implement it.

5.4 Design Examples

In order to verify the significance of the proposed method, a design example is
shown, where the object function of the optimization is chosen as the maximum
coding gain [1] for the isotropic autocorrelation function (acf) model1 with the
correlation coefficient � = 0:95. Figure 5.9 shows the resulting basis images. The
coding gain results in 11:432 [dB], whereas that of the corresponding separable
structure with the 1-D LPPUFB (Chapter 2) is 11:418 [dB]. Table 5.2 compares
the coding gain (denoted by PROP.) with those of the separable one (denoted by

1See Appendix B
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Figure 5.9: Basis images of a design example of an ASPUFB, where M0 =M1 = 4 and
N0 = N1 = 2.

Table 5.2: Coding gain GSBC of several MD-LPPUFBs with rectangular decimation
for the isotropic acf model with the correlation factor � = 0:95. M and
(N0; N1)

T denote the decimation matrix and the order of polyphase matrix,
respectively.

M

�
N0

N1

�
G [dB]

SEP. GEN. PROP.�
4 0
0 4

� (0; 0) 10.75 10.78 10.78
(1; 1) 11.20 11.28 11.21
(2; 2) 11.42 11.55 11.43
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SEP.). For reference, the coding gain of the corresponding non-separable one of
general M-D LPPUFBs proposed in (Chapter 4) is also shown (denoted by GEN.).

As a result, it can be verified that our proposed structure possesses capability
to take higher coding gain than that of separable one, holding the AS and PU
properties.

5.5 Summary

In this chapter, a 2-D binary-valued (BV) lapped transform (LT), to which this
thesis refers as the lapped Hadamard transform (LHT), was proposed. LHT has
basis images which are axial-symmetric (AS) and take only BV elements�1 with
a scale of a power of 2. It is known that there is no 2 � 2-point separable ASLT,
By taking non-separable BV basis, our proposed LHT achieves both the AS and
overlapping properties for the 2 � 2-point transform. It was shown that LHT of
a larger size is provided with a tree structure. The characteristic was shown to be
very similar to that of the 2-D HT, even if LHT differs from HT in that the basis
images are overlapping and non-separable.

A design method of ASPUFBs with a lattice structure was also proposed,
where filters are able to take continuous valued coefficients. The 2-D LHT was
shown to be efficiently implemented by the lattice structure. The AS and PU prop-
erties are guaranteed during the design phase. Thus, an unconstrained non-linear
optimization process can be used to design it. By showing some design examples,
the significance of the proposed structure was verified.



Chapter 6

Conclusions

This thesis dealt with the design method of transfer functions of filters in real-
coefficient linear-phase paraunitary filter banks and the implementation issues.
The reason why this kind of filter banks was chosen as a topic of this thesis is
that those are suitable for image processing and expected as an alternative to the
conventional transform based processing, such as the Karhunen-Loeve transform,
discrete cosine transform (DCT) and the Hadamard transform (HT). Efficient im-
plementation is of interest in practical applications since image processing known
to require large amount of computations and memories.

Filter banks can be flexibly characterized, and therefore both of the design and
implementation are highly dependent on the application. Image signals, such as
still pictures and video movies, have some features that they have two or three
direction, which are vertical, horizontal and sometimes temporal directions, and
they are of finite hight and width in vertical and horizontal directions, respec-
tively. In addition, the human visual system is known to be sensitive to the phase
distortion. Thus, for image processing, filter banks have to be designed and imple-
mented by taking account of these aspects. Several researchers have considered
that the linear-phase (LP) and paraunitary (PU) properties are particularly favor-
able. We agreed with these opinions, and have devoted our effort to this topic for
a few years. All of the results derived from those our works are written in this
thesis. Following summarizes the contribusions of this thesis.

6.1 Contributions

To construct several LPPUFBs, this thesis focused on the use lattice structures,
which have a form in cascade of order-one polyphase matrices satisfying some
particular condition, according to the class dealt with. The lattice structure has
been popularly used because of its simplicity, and some sophisticated structure
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had already been developed by several researchers. However, since most of the
design approachs using the lattice structure requires non-linear optimization pro-
cesses, there has remained the starting guess problem so far.

Chapter 2 In Chapter 2, to avoid at least insignificant local minimum solu-
tions, a lattice structure which makes the starting guess of the design parameters
simple was provided. Then, a recursive initialization design procedure was pro-
posed. Design examples illustrates that insignificant local minimum solutions can
be avoided by the proposed procedure. For reducing the computational complex-
ity, the simplification of the proposed structure was also discussed, where it was
shown to achieve higher coding gain with less computational complexities than
those of the conventional one.

Chapter 3 An advantage to use the filters satisfying the LP property is that the
symmetric extension method can be applied to avoid the size-increasing problem.
Since image data has finite duration in the horizontal and vertical directions. In
Chapter 3, a structure of LPPUFBs for finite-duration sequences was proposed
with the symmetric extension method. The contribution of the proposed structure
is that it does not require any redundant operations involved in the extension of
signals. The proposed structure was shown to have less computational complexity
than that of the direct symmetric-extension approach. An M -band discrete-time
wavelet transform (DTWT) for finite-duration sequences was also discussed, and
the condition for the number of channelsM was indicated. In addition, we consid-
ered applying the proposed structure to the subband codec (SBC) systems which
are compatible with JPEG and MPEG. The proposed SBC system was shown to
be able to encode and decode the standard bitstreams.

Chapter 4 A lattice structure of multidimensional (MD) LPPUFBs has also
been proposed. We had known that there is a lattice structure for non-separable fil-
ter banks with a rectangular decimation factor. Chapter 4 provided more general
structure, which can produce non-separable filter banks with a non-rectangular
decimation factor. Since the system structurally restricts both the PU and LP
properties, an unconstrained optimization process can be used to design it. By
showing some design examples, the significance of the proposed structure for
both the rectangular and non-rectangular decimation cases were verified.

Chapter 5 The symmetric extension method, in general, can not be applied to
MD systems even if it is LP. To use the method, filters have to be axial-symmetric
(AS) for each dimension. From such a background, Chapter 5 dealt with axial-
symmetric paraunitary filter banks (ASPUFBs). In this chapter, a 2-D binary-
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valued (BV) lapped transform (LT) was proposed, where this thesis refers to it as
the lapped Hadamard transform (LHT). LHT has basis images which are axial-
symmetric (AS) and take only BV elements �1 with a scale of a power of 2. It
was shown that LHT of a larger size is provided with a tree structure. A design
method of ASPUFBs with a lattice structure was also proposed, where filters can
take continuous valued coefficients. The 2-D LHT is also implemented by the
structure, and is shown to require less computational complexities than the direct
calculation. The AS and PU properties are guaranteed during the design phase.
Thus, an unconstrained non-linear optimization process can be used to design it.
Some design examples showed the significance of the proposed structure.

6.2 Open Problems

Although this thesis derived several new results on LPPUFBs, there still remain
some important questions. Let us summarize them as open problems. We hope
that this thesis is helpful to solve these questions in future.

Recursive Initialization Procedure In Chapter 2, this thesis proposed a recur-
sive initialization procedure for the design of 1-D LPPUFBs whose filters are all
of length a multiple of the number of channels. Recently, Tran et al. showed
that there is a more general lattice structure of LPPUFBs in terms of the filter
length [15]. To design it with a non-linear optimization process, we have to take
care the starting guess problem. Thus, it is worth investigating the recursive ini-
tialization procedure as well.

For MD systems, we have the same problem. That is how to avoid insignificant
local minimal solutions in non-linear optimization processes. One might think of
developing a recursive initialization procedure similar to the procedure for 1-D
LPPUFBs. However, there are some questions. For example, which direction we
should firstly increase the order horizontal or vertical, which we should increase
the order alternately between different directions or in sequence for each direction,
and so forth.

Fast Implementation In Chapter 2, a fast implementation technique was devel-
oped for even-channel 1-D LPPUFBs. The corresponding structure was obtained
by simplifying the structural components as well as the conventional fast imple-
mentation technique.

Note that the technique is suitable only for holding high coding gain, and that
the way of simplification is not unique. Therefore, there remain problems that we
have no simplification technique suitable for any other object function, and that
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there is a possibility of being a better way of simplifying the structure than one
shown in this thesis. We need more investigation for these questions.

In addition, neither of odd-channel LPPUFB nor MD-LPPUFB has any fast
implementation. These are left as open problems.

Structure for Finite-Duration Sequences In Chapter 3, an efficient structure
for finite-duration sequences was proposed. The proposed structure was derived
under the condition that filters and the input sequence are of length a multiple of
the number of channels and the type of symmetry of an extended input sequence
is HSHS. However, there is a possibility for us to have a different efficient struc-
ture under another condition. Furthermore, it has not been investigated how to
construct it for MD systems yet.

Completeness In Chapters 4, this thesis dealt with lattice structures of MD-
LPPUFBs. In this thesis, we still have an important question whether the structure
is complete for the class dealt with or not. The proof for the completeness of 1-
D LPPUFBs has already been shown in some articles [10, 27]. However, their
logic could not be applicable to general MD-LPPUFBs, since the proof requires
us to solve an orthogonalization problem of multi-variable polynomial matrices.
Our conjecture is that the proposed structure is complete for degree-factorable
LPPUFBs1 [18, 29, 39], although this has not been proven yet.

In addition, the completeness of the lattice structure of ASPUFBs proposed in
Chapter 5 is also under consideration.

Generalization of MD Systems It is also of interest to investigate another class
of MD-LPPUFBs provided by releasing the constraint on the region of support of
filters.

In Chapter 4, the region of support of filters is restricted to the set of integer
vectors in the fundamental parallelepiped (FPD) region generated by the multipli-
cation of the decimation factor M and a diagonal matrix � consisting of integer
diagonal elements. There remains the question if the region of support can be
generalized as was done for 1-D LPPUFBs in the article [15].

For ASPUFBs, we just considered the 2-D system and the decimation factor
was restricted to be a diagonal matrix consisting of even diagonal elements. We
still have questions for extending it to multi-dimension more than two and for
releasing the restrictions with regard to the decimation factor.

1Although degree-factorable filter banks are defined in two dimensions, the extension to mul-
tiple dimensions is relatively easy.



Appendix A

Coding Gain of SBC Systems

The subband coding gain GSBC is used to evaluate the usefulness of an SBC sys-
tem for a certain input sequence x(n) [1,4]. This criteria shows how much the sig-
nal to noise ratio (S/N) is improved from that of the b-bit PCM quantizer, where
the average bit of the quantizers for the subband signals is assumed to be b.

Let �2q,PCM be the quantization noise variance of the b-bit PCM quantizer. Then,
we have

�2q,PCM = c� 2�2b�2x; (A.1)

where c is a constant of proportionality, which depends on the statistics of x(n)
etc., and �2x is the input variance.

Let �2q,SBC be the noise variance of the SBC system. Then, the subband coding
gain GSBC is defined by the ratio of �2q,PCM to �2q,SBC, that is,

GSBC =
�2q,SBC

�2q,PCM

; (A.2)

where the followings are assumed:

� Filter banks are paraunitary (PU).

� The input sequence x(n) is real and zero mean wide sense stationary (WSS).

� The bit number of the PCM quantizer b is equal to the average bit number
of the quantizer for subband signals, that is, b = 1=M

PM�1
k=0 bk, where bk

is the bit number of the quantizer for the k-th subband signal yk(n).

� The quantization noise variance of the k-th subband signal �2qk is propor-
tional to 2�2bk and the variance of subband signals �2yk , that is, �2qk =

c � 2�2bk�2yk , where c is a constant of proportionality independent from
the channel number k.
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� Optimal bit-allocation is applied. That is, bk = b + 0:5f�2yk=(
QM�1

i=0 �2yi)g.
Optimal bit-allocation is the bit allocation for subband signals that minimizes

the average of the quantization noise variance, that is, �2q = 1=M
PM�1

k=0 �2qk, un-
der the condition that the average bit number is b. It can be verified that Eq. (A.2)
can be rewritten in terms of the subband signal variances �2yk as follows:

GSBC =
1
M

PM�1
k=0 �2yk

(
QM�1

k=0 �2yk)
1
M

(A.3)

The subband coding gain GSBC depends on not only the filter banks but also
statistics of the input sequence x(n). Thus, it is convenient for evaluating the
usefulness of filter banks to use a model for the input sequence. For example, the
first-order Malkov process or AR(1) process is known to match to image statictics.
Appendix B deals with such first-order models.



Appendix B

First-Order Models

Autoregressive or Markov source models are very useful for evaluating image pro-
cessing systems. In this appendix, let us briefly review first-order Markov models
or AR(1). First-order models for two-dimensional sources are also discussed. For
the detail, see the reference [36].

B.1 First-Order Markov or AR(1) Process

Let w(n) be the zero mean white noise-process. Then, the AR(1) process x(n)
with zero mean and the correlation factor � is generated by

x(n) = w(n) + �x(n� 1): (B.1)

In brief, for highly correlated process (� ! 1), there is the tendency that two
succeeding samples of the sequence take similar values one another. The AR(1)
process with � = 0:95 is very frequently used as a model for image data.

Let �2w be the white noise variance. Then, the autocorrelation function (acf)
of AR(1) process Rxx(k) is given by

Rxx(k) = �2x�
jkj (B.2)

where �2x = �2w=(1� �2).
Next, we consider evaluating the subband coding gain of a PU filter bank

whose filters all have the length L. To evaluate the subband coding gain GSBC (see
Appendix A), it is useful to take an L-th order correlation matrix. The L-th order
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correlation matrix Rxx of AR(1) process with the correlation factor � is given by

Rxx = E[xxT ] = �2x

0
BBBBB@

1 � �2 � � � �L�1

� 1 � � � � �L�2

�2 � 1 � � � �L�3
...

...
...

. . .
...

�L�1 �L�2 �L�3 � � � 1

1
CCCCCA ; (B.3)

where x is a L � 1 vector consisting of L succeeding samples of the sequence
x(n) and the function E[�] denotes the expectation of its argument.

Defining y as a M �1 vector consisting of M subband signals, where the k-th
element takes a sample of the k-th subband signal, we have the following relation:

y = Px; (B.4)

where

[P]k;n = hk(L� 1� n) (B.5)

for k = 0; 1; � � � ;M � 1 and n = 0; 1; � � � ; L� 1. In this equation, hk(n) denotes
the k-th analysis filter.

Thus, from the correlation matrixRxx and the M�L matrixP, we can simply
obtain the correlation matrix of the subband signals Ryy as follows:

Ryy = E[yyT ] = E[Px(Px)T ] = PRxxP
T : (B.6)

The variance of the k-th subband signal �2yk is obtained as the k-th diagonal
element of Ryy, that is,

�2yk = [Ryy]k;k: (B.7)

Thus, once a PU filter bank is given, the subbnad coding gain GSBC for AR(1)
process with any correlation factor � can easily be obtained from Eq. (A.3).

B.2 First-Order Models for 2-D Sources

According to the article [36], we have two acfs commonly used for modeling
image data. One is the separable model and the other is the isotropic model. The
former is said to be appropriate especially to many artificial images, and the latter
appropriate especially to images of natural objects.

The separable acf model is given by

Rxx(kh; kv) = �2x�
jkhj
h �jkvj

v ; (B.8)
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where kh and kv are the spatial shifts in horizontal and vertical image directions,
and �h and �v are the correlation factors for horizontal and vertical directions,
respectively. If �h = �v = �, the last equation is reduced to

Rxx(kh; kv) = �2x�
jkhj+jkvj: (B.9)

Unlike the separable model, the isotropic acf model is non-separable, and is
given by

Rxx(kh; kv) = �2x�
(k2h+k

2
v )
1=2

: (B.10)

This model has no preferred direction and is appropriate for natural objects.
Even for 2-D filter banks, by lexicographically arranging the array of the filter

coefficients into a sequence, we can obtain the variance of the kh;kv-th subband
signal �2ykh;kv

in the similar way to the procedure described in the previous sec-
tion. Note that we have to take care of ordering the elements in the correlation
matrix Rxx according to the arrangement of the filter coefficients. Once the vari-
ances �2ykh;kv

are calculated, the subband coding gain GSBC is simply obtained as
in Eq. (A.3).
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